
MuntsOS

Application Note #24:
Development Environment

Setup for x86-64 Windows 10/11

Revision 3
29 December 2025

by Philip Munts
dba Munts Technologies

http://tech.munts.com

MuntsOS Application Note #24 -- Setup for x86-64 Windows 10/11 Page 1 of 6

Introduction

This application note describes how to install the application software development
environment for MuntsOS Embedded Linux (hereafter just MuntsOS) onto an x86-64 (i.e.
AMD or Intel 64-bit CPU) computer running Windows 10 or 11.

Hereafter in this document, the term Windows must be understood as x86-64 Windows 10 or
11.

While it is entirely feasible to run development tools targeting MuntsOS on a Windows
computer in a Linux virtual machine, or in Windows Subsystem for Linux, these options
impose a significant system administration burden, as you must install and maintain a full
Linux distribution just to run a cross-toolchain.

The MuntsOS Embedded Linux cross-toolchains running on Windows can be installed and
updated periodically from one of the following git repositories:

https://git.munts.com/toolchains/win64/gcc-aarch64-muntsos-linux-gnu-ctng
https://git.munts.com/toolchains/win64/gcc-arm-muntsos-linux-gnueabihf-ctng-raspberrypi1

At time of writing, these cross-toolchains do not include support for GNU Modula-2, due to
GCC Bug 92336.

Building a Cross-Toolchain for Windows

In the GCC cross-toolchain world, there are names for three different computers running
potentially different operating systems:

Build is the computer you build your cross-toolchain on.
Host is the computer you run your cross-toolchain on.
Target is the computer you use your cross-toolchain to compile programs for.

Building a cross-toolchain that will run on Microsoft Windows was a terrible battle. Neither
Crosstool-NG nor GNU Dev Tools for ARM are able at time of writing to successfully build a
cross-toolchain (build=64-bit Windows, host=64-bit Windows, target=32- or 64-bit ARM Linux)
using either Cygwin or MSYS2/Mingw-w64 (the two most popular environments for compiling
and running Unix software on Windows). Crosstool-NG can ostensibly build a Canadian
Cross (build=64-bit Linux, host=64-bit Windows, target=32- or 64-bit ARM Linux) toolchain in
one go, but that also failed.

I eventually built a cross-compiler targeting Windows (build=64-bit Linux, host=64-bit Linux,
target=64-bit Windows). Using that and the existing normal MuntsOS cross-toolchains
(build=64-bit Linux, host=64-bit Linux, target=32- or 64-bit ARM Linux), I was finally able to
manually build Canadian Cross MuntsOS cross-toolchains for Windows (build=64-bit Linux,
host=64-bit Windows, target=32- or 64-bit ARM Linux).

MuntsOS Application Note #24 -- Setup for x86-64 Windows 10/11 Page 2 of 6

https://learn.microsoft.com/en-us/windows/wsl
https://wiki.osdev.org/GCC_Canadian_Cross
https://wiki.osdev.org/GCC_Canadian_Cross
https://gcc.gnu.org/
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92336
https://gcc.gnu.org/onlinedocs/gm2
https://git.munts.com/toolchains/win64/gcc-arm-muntsos-linux-gnueabihf-ctng-raspberrypi1
https://git.munts.com/toolchains/win64/gcc-aarch64-muntsos-linux-gnu-ctng

Caveats & Limitations & Rants

Windows presents two main difficulties that make it nigh impossible to build a cross-toolchain
targeting MuntsOS and difficult to even install one built elsewhere.

The first difficulty is the lack of symbolic links compatible with Unix operating systems such as
Linux. Windows does provide symbolic links, but they are different enough that it becomes
difficult to translate from Linux to Windows. One example of different functionality is that
Linux is happy to create a symbolic link that points to a file that does not yet exist while
Windows refuses to create a link to a non-existent target. Another complication is that
Windows requires different kinds of links for different kinds of targets and some of them
require administrative access to create.

The solution to this first difficulty is to replace all symbolic links in the cross-toolchain directory
tree with the targets they point to. This is surprisingly easy to accomplish with:

rsync -avcqL

After replacing symbolic links with their targets, the size of the cross-toolchain directory tree
will be somewhat larger, as there will be an extra copy of each file previously pointed to by a
symbolic link.

The second and worst difficulty is that Windows and MacOS file systems are, by default, case
insensitive, meaning upper case and lower case letters are not distinguished in file names.
Only one of aa, aA, Aa, and AA can exist in a directory. If you create a file aa and
subsequently open and write to AA, only the former will be present and will contain the data
written to the latter.

Unix and Linux file systems are typically case sensitive, meaning that aa, aA, Aa, and AA can
all exist as distinct files in a directory. In a rational world this would not be a problem:
Rational software developers would never deliberately create filenames differing only in letter
case, both because such a policy prevents very obscure bugs (reading or writing the wrong
file), and in recognition of the existence of more than one billion case insensitive Windows
and MacOS computers that people actually use.

In the real world the situation is rather uglier. The Linux kernel source tree contains filenames
differing only in letter case, making it impossible to unpack or checkout the Linux source tree
to a typical Windows or MacOS file system. The GCC and/or binutils source trees also seem
to contain filenames differing only in letter case, as may some of the library components
included in the MuntsOS cross-toolchains.

The cross-toolchain distribution tarballs mentioned above in the first section of this document
contain about 15 or so sets of filenames differing in case and present in the same directory,
including the insane example of linux/netfilter/xt_CONNMARK.h that just includes its
evil twin linux/netfilter/xt_connmark.h. This means that you cannot unpack one of
the cross-toolchain distribution tarballs to a typical Windows file system without corrupting the
cross-toolchain directory tree.

MuntsOS Application Note #24 -- Setup for x86-64 Windows 10/11 Page 3 of 6

Windows from Windows 10 Build 1803 onwards provides a command fsutil.exe that can
configure an empty directory for case sensitive filenames:

fsutil file SetCaseSensitiveInfo YourDestinationFolder enable

Files and directories subsequently created under YourDestinationFolder/ will be case
sensitive, and the Linux kernel could be checked out into YourDestinationFolder/ or
one of the cross-toolchains unpacked into YourDestinationFolder/.

Note: The fsutil command above may not work unless WSL (Windows Subsystem for
Linux) has been enabled. If you find that to be the case (pun untended) on your computer,
you can issue the following command in a PowerShell window (opened in Administrative
mode) to enable WSL:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-
Subsystem-Linux

There does not appear to be any workable solution for any Windows older than Windows 10
Build 1803. It is theoretically possible to create a disk partition with MBR partition ID 7 and
format said partition as a case sensitive Universal Disk Format file system using the following
DOS command:

format G: /fs:UDF (Replace G: with your actual drive letter!)

MuntsOS Application Note #24 -- Setup for x86-64 Windows 10/11 Page 4 of 6

https://en.wikipedia.org/wiki/Universal_Disk_Format

Installation Procedure

Before Installing a Cross-Toolchain

You will need to use the Windows Command Line Interface to make use of the MuntsOS
cross-toolchains for Windows. Even if you use a visual IDE (Integrated Development
Environment) such as Visual Studio Code, it will be easier to set necessary environment
variables in a command line window before starting the IDE in your project directory with a
command like:

code .

Windows offers two command line window programs: The older cmd.exe inherited from MS-
DOS and the newer Windows Terminal. The latter is far superior and strongly
recommended. Windows Terminal can be configured for different command interpreters,
including cmd.exe.

You will also need to install one of two Unix-like environments for Windows: Cygwin or
MSYS2. Each of these environments provides a large collection of programs (such as ls,
tar, or gmake) that originally came from Unix but have been compiled for Windows.

Cygwin and MSYS2 are both collections of packages, like Linux distributions, each of which
installs one or more programs. For Cygwin, the package manager is the GUI Cygwin
Installer. For MSYS2 the command line package manager is pacman.

Tip: Alire (the Ada LIbrary Repository) automatically installs most or all of the MSYS2
packages that you will need to install and use the MuntSOS cross-toolchains for Windows.
After you have installed Alire, you can use a batch file like alire.bat to set the PATH variable in
a Windows command terminal.

Installing a Cross-Toolchain

The following installation procedure assumes that Cygwin has been installed at
 C:\Program Files\cygwin and that MuntsOS cross-toolchains will be installed under
 C:\Program Files\MuntsOS. If you wish use MSYS2 and/or to install things elsewhere,
you will need make adjustments to this procedure.

The following commands, which must be issued from a command window opened with
administrative (i.e. superuser) access, create the directory C:\Program Files\MuntsOS,
where cross-toochains are to be installed, and make it filename case sensitive:

set PATH=C:\Program Files\cygwin\bin;C:\Windows;C:\Windows\System32
cd "C:\Program Files"
md MuntsOS"
fsutil.exe file setCaseSensitiveInfo MuntsOS enable
cd MuntsOS

MuntsOS Application Note #24 -- Setup for x86-64 Windows 10/11 Page 5 of 6

https://github.com/pmunts/alire-goodies/blob/master/alire.bat
https://alire.ada.dev/
https://www.msys2.org/docs/pacman
https://cygwin.com/setup-x86_64.exe
https://cygwin.com/setup-x86_64.exe
https://learn.microsoft.com/en-us/windows/terminal

Verify case sensitivity with the following commands:

touch aa AA
dir
del aa AA

You should receive response text resembling the following, showing two distinct files aa and
AA:

 Directory of C:\Program Files\MuntsOS

11/24/2025 10:18 AM <DIR> .
11/24/2025 10:17 AM <DIR> ..
11/24/2025 10:18 AM 0 aa
11/24/2025 10:18 AM 0 AA

Now download and verify a MuntsOS cross-toolchain for Linux with one or more of the
following command sequences:

cd C:/PROGRA~1/MuntsOS
git clone https://git.munts.com/toolchains/win64/gcc-aarch64-muntsos-
linux-gnu-ctng
cd gcc-aarch64-muntsos-linux-gnu-ctng
md5sum --quiet -c share/stuff/checksums.md5

cd C:/PROGRA~1/MuntsOS
git clone https://git.munts.com/toolchains/win64/gcc-arm-muntsos-
linux-gnueabihf-ctng-raspberrypi1
cd gcc-arm-muntsos-linux-gnueabihf-ctng-raspberrypi1
md5sum --quiet -c share/stuff/checksums.md5

After Installing Cross-Toolchains

You will also need to clone the following two git repositories to pick up some make include
files necessary to compile programs with the MuntsOS cross-toolchains:

git clone https://github.com/pmunts/libsimpleio
git clone https://github.com/pmunts/muntsos

These should be cloned in your Windows home directory by default. If you wish to install
them elsewhere, such as in C:/PROGRA~1/MuntsOS, you can set the LIBSIMPLEIO and
MUNTSOS environent variables to the alternate checkout locations.

MuntsOS Application Note #24 -- Setup for x86-64 Windows 10/11 Page 6 of 6

https://github.com/pmunts/muntsos
https://github.com/pmunts/libsimpleio

