
MuntsOS Embedded Linux

Application Note #16:
 Sending Email

Revision 5
25 March 2025

by Philip Munts
dba Munts Technologies

http://tech.munts.com

MuntsOS Application Note #16 -- Sending Email Page 1 of 10

Introduction

This application note describes how send email messages from a MuntsOS Embedded Linux
(hereafter just MuntsOS) target computer. How to receive email messages is beyond the scope of
this application note.

Prerequisites

MuntsOS must be installed on the target computer (AppNote #3 or AppNote #15).

Test Platform Hardware

The test platform for the purposes of this application note consists of any MuntsOS target board with
Internet connectivity.

Mail Transfer Agent (MTA)

A Mail Transfer Agent is a system program that accepts an email message text conforming to
RFC5322 and then dispatches it to one or more recipients.

Examples of full service MTA's include Sendmail and Postfix. Full service MTA's are often large and
difficult to configure and may not suitable for small embedded systems.

Examples of lightweight MTA's more suitable for small embedded systems include DragonFly Mail
Agent, and E-MailRelay.

By tradition every MTA for Unix systems provides a command line program named
/usr/sbin/sendmail that reads an email message text conforming to RFC5322 from standard
input and then dispatches the message to its recipient(s).

Given a file message.txt containing an email message text conforming to RFC5322, the following
command sends an email:

/usr/sbin/sendmail -t <message.txt

The sendmail command included in MuntsOS is provided by BusyBox. It is not really an MTA per
se, as it just dispatches emails to an SMTP (Simple Mail Transfer Protocol) server listening on
localhost:25 that must do all the work of dispatching emails to recipients.

MuntsOS does not include an SMTP server, so in order to send email from a MuntsOS target
computer, you must configure and/or install either an MTA or an SMTP server or both. Three options
are described later in this document.

Junk mail countermeasures have made it increasingly difficult for an Internet of Things device like a
MuntsOS target computer to send email successfully, even with a robust MTA. You will most likely
need to dispatch emails to an authenticating intermediate SMTP relay (aka smart host) instead of
directly to the recipient's domain SMTP server(s).

MuntsOS Application Note #16 -- Sending Email Page 2 of 10

https://repo.munts.com/muntsos/doc/AppNote3-Installation-from-Linux.pdf
https://en.wikipedia.org/wiki/Internet_of_things
https://emailrelay.sourceforge.net/
https://github.com/corecode/dma
https://github.com/corecode/dma
http://www.postfix.org/
https://www.proofpoint.com/us/products/email-protection/open-source-email-solution
https://tools.ietf.org/html/rfc5322
https://repo.munts.com/muntsos/doc/AppNote15-Installation-from-Windows.pdf

Mail User Agent (MUA)

A Mail User Agent is a user program that generates an email message text conforming to RFC5322
and then passes it to an MTA for dispatching. On Unix and Linux, the MUA often runs
/usr/sbin/sendmail using the popen() Standard I/O Library function and writes the
generated email message text to the file handle returned by popen().

MuntsOS includes the MUA /usr/bin/mail from the GNU Mailutils package. The mail program
reads a message payload from standard input, generates an envelope conforming to RFC5322, and
then passes the result to /usr/sbin/sendmail for dispatching.

The following command sends an email with the subject Test1 to recipient you@me.com:

echo "This is a test" | mail -s "Test1" you@me.com

An application program can run the mail command with popen() to originate an email message.

It is recommended that all MuntsOS shell scripts and application programs use the mail program
for originating emails.

The mail command constructs the sender address from the user name and the host name. This
can be overridden couple of ways, if the MTA doesn't already override it. This is fraught with peril:
Depending on what junk mail countermeasures have been implemented on the SMTP relay,
overriding the sender address may be required, forbidden, or limited to certain domains.

You can add -r <sender> to the mail command line:

echo "This is a test" | mail -r me@you.com -s Test1 you@me.com

Or you can create a file call .mail in each user's home directory containing the following:

address {
 email-addr me@you.com;
};

Do not include a display name. The mail command does not process the sender display name
correctly.

An application program can also act as its own MUA, dispatching RFC5322 conforming email
message texts to /usr/sbin/sendmail via popen() or to an SMTP server via TCP at
localhost:25. The Ada Web Server library provides email client services for the Ada
programming language. The System.Net.Mail namespace provides email client services for .Net
Core programs.

Tip: The Linux Simple I/O Library provides an Ada package Email_Mail and a .Net class
IO.Objects.Email.Mail.Relay for originating an email using the mail command. These
are less flexible but considerably easier to use than either the Ada Web Server library or the
System.Net.Mail namespace.

MuntsOS Application Note #16 -- Sending Email Page 3 of 10

https://github.com/pmunts/libsimpleio
https://learn.microsoft.com/en-us/dotnet/api/system.net.mail?view=net-9.0
https://docs.adacore.com/aws-docs/aws/index.html
https://mailutils.org/

E-MailRelay

The emailrelay extension package provides an SMTP server at localhost:25. It does not
replace /usr/sbin/sendmail.

E-MailRelay must be configured by editing two configuration files:

/usr/local/etc/emailrelay/auth.conf -- Replace username and password with the
login credentials for your SMTP relay.

/usr/local/etc/emailrelay/emailrelay.conf -- Replace "servername:port" with
your SMTP relay settings.

DragonFly Mail Agent

The dma extension package replaces /usr/sbin/sendmail. It does not provide an SMTP
server at localhost:25, making it somewhat less flexible than emailrelay.

DragonFly Mail Agent must be configured by editing two configuration files:

/usr/local/etc/dma/auth.conf -- Replace username, smart host, and password
with the login credentials for your SMTP relay.

/usr/local/etc/dma/dma.conf -- Replace the values for SMARTHOST, PORT, and
MASQUERADE with values specific to your SMTP relay settings.

On Demand SSH Tunnel to a Remote Computer

You can configure a MuntsOS target computer to SSH mailtunnel@foo.bar whenever
sendmail or another process opens a TCP connection to localhost:25.

If you have administrative access to some other Unix (FreeBSD, OpenBSD, Linux, etc.) computer
foo.bar that runs an SMTP server listening on its localhost:25, that is permitted to send
email, and that you can log into with ssh, then you can create a user mailtunnel on foo.bar
that connects to foo.bar localhost:25 whenever you SSH mailtunnel@foo.bar.

After the configuration described above have been made, when sendmail on the target computer
connects to localhost:25, data is invisibly piped to and from foo.bar localhost:25 by way
of a temporary SSH tunnel.

MuntsOS Application Note #16 -- Sending Email Page 4 of 10

https://github.com/corecode/dma
https://emailrelay.sourceforge.net/

Target Computer Setup

1. Create or modify /etc/inetd.conf and /root/.ssh/known_hosts with the following
commands, replacing foo.bar with the domain name of your remote computer:

cat <<EOD >>/etc/inetd.conf
Mail relay over SSH tunnel
127.0.0.1:25 stream tcp nowait root /usr/bin/ssh -q -T mailtunnel@foo.bar
EOD

ssh-keyscan foo.bar >>/root/.ssh/known_hosts

2. Create /root/.ssh/id_rsa and /root/.ssh/id_rsa.pub using sysconfig option
Regenerate superuser id_rsa.

3. Enable inetd by setting bit 10 in the OPTIONS word in /boot/cmdline.txt (Raspberry Pi)
or /boot.config.txt (Orange Pi Zero 2W or BeaglePlay) using sysconfig option Edit
cmdline.txt or Edit config.txt.

4. Copy .ssh/id_rsa.pub to the remote computer superuser and then reboot.

Tip: You can build a custom mailtunnel extension package to encapsulate all of this target
computer goop. This is especially handy if you are setting up more than one target computer.

Remote Computer Setup

1. Modify /etc/ssh/sshd_config:

sudo su -
cat <<EOD >>/etc/ssh/sshd_config

Match User mailtunnel
 AllowTcpForwarding no
 ForceCommand ncat -4 127.0.0.1 25
EOD

killall -HUP /usr/sbin/sshd

2. Create user mailtunnel:

groupadd -g 555 mailtunnel
useradd -c "Mail Tunnel" -m -g 555 -u 555 -s /bin/sh mailtunnel
rm -rf /home/mailtunnel/.*
mkdir -p /home/mailtunnel/.ssh
cat id_rsa.pub >>/home/mailtunnel/.ssh/authorized_keys
chown -R mailtunnel:mailtunnel /home/mailtunnel
chmod 444 /home/mailtunnel/.ssh/authorized_keys
chmod 500 /home/mailtunnel/.ssh
chmod 500 /home/mailtunnel

MuntsOS Application Note #16 -- Sending Email Page 5 of 10

Testing

1. Try to log in from the MuntsOS target computer to the remote computer:

ssh mailtunnel@foo.bar
quit

You should get responses similar to the following:

220 bethel.munts.net ESMTP OpenSMTPD
221 2.0.0 Bye

2. Try to send yourself an email with a command similar to the following:

echo "This is a test" | mail -s Test1 me@you.com

MuntsOS Application Note #16 -- Sending Email Page 6 of 10

Best Practices

Email is not a guaranteed delivery service. Messages can be dropped anywhere along the delivery
path for a variety of reasons, with or without any notification. Furthermore, as junk mail
countermeasures are implemented by email providers, formerly working email setups can fail without
warning. Because of the lack of guaranteed delivery, in the context of an embedded system, email is
more appropriate for non-critical notifications.

Email can be incredibly useful for embedded system notifications, provided one can accept the reality
of messages being dropped occasionally. Some cell phone carriers even provide a bridge from email
to SMS, allowing your embedded system to email a notification directly to your cell phone.

A Brief Description of how Internet Mail Works

Every Internet domain that can accept incoming emails must publish a list of one or more SMTP
servers that incoming emails can be dispatched to. Each SMTP server is registered with an MX
record in the domain's DNS (Domain Name System) servers.

Formerly any computer on the Internet, specifically including a MuntsOS target computer, was able to
deliver a message directly to a recipient's domain SMTP server(s), by performing a DNS MX record
lookup, and then walking the list of MX records and trying to delivery the message to each recipent
domain SMTP server. In short, a computer from which an email originated (e.g. a MuntsOS target
computer) made a TCP connection to a recipient domain SMTP server published in a DNS MX record
and passed on the message in just one hop. This was how Internet email was originally designed to
operate.

Unfortunately, in reason years, service providers such as Gmail have implemented admittedly
necessary junk mail countermeasures that have broken that original design. Now recipient domain
SMTP servers such as smtp.gmail.com refuse connections from SMTP clients that cannot be
authenticated. This prevents junk mail generators from impersonating legitimate email service
providers.

Part of the authentication process is to perform both forward and reverse DNS lookups on the domain
name that an SMTP client introduces itself as with the HELO or EHLO command. Any client without
matching forward and reverse DNS records or an IP address that doesn't match what was reported
by HELO or EHLO is rejected. This will necessarily and by design exclude any client behind a NAT
(Network Address Translation) firewall, and any client with a dynamically assigned IP address that
cannot also register a dynamic reverse DNS address as DHCP (Dynamic Host Configuration
Protocol) servers that assign IP addresses to Internet nodes seldom have the ability to register IP
address changes to DNS servers.

Therefore reverse DNS lookup authentication limits the set of eligible SMTP clients to those with a
fixed IP address not behind a firewall and with matching forward and reverse DNS lookups. But there
are still more hurdles.

Email service providers now require each domain wishing to connect to e.g. smtp.gmail.com to
publish a white list of computers that are authorized to dispatch emails from that domain, in yet
another kind of DNS record, the TXT record.

MuntsOS Application Note #16 -- Sending Email Page 7 of 10

As a concrete example, to enable my OpenBSD dedicated server bethel.munts.net with IP
address 64.156.192.118 to send an email to my Gmail account, I had to edit a TXT record for the
munts.net domain at GoDaddy, the domain name registrar for the munts.net domain, changing
v=spf1 include:secureserver.net -all (GoDaddy's email service now outsourced to
Microsoft) to v=spf1 include:secureserver.net ip4:64.156.192.118 -all.
(GoDaddy's email service plus IP address 64.156.192.118). This SPF (Sender Policy Framework)
record announces to the world that valid emails from the munts.net domain can only come from
secureserver.net or IP address 64.156.192.118.

It is likely that junk mail countermeasures will continue to squeeze out privately administered SMTP
relays and that email service providers will eventually only accept incoming SMTP connections to
TCP port 25 from other recognized email service providers.

For all practical purposes, end point computers such as MuntsOS target computers can no longer
originate emails and deliver them to recipient domain SMTP servers. Instead, end point computers
must pass emails to an intermediate SMTP relay aka Smart Host, either a privately administered Unix
computer such as bethel.munts.net or one administered by your email service provider, such
as smtp.gmail.com or smtp.office365.com, etc.

Mail service provider SMTP servers such as smtp.gmail.com now have two functions: They
accept email account specific, encrypted, password or OAuth2 authenticated, connections from
MUA's (such as Thunderbird) on TCP ports 465 or 587, or connections from recognized mail service
provider SMTP relays on port 25.

The emailrelay and dma MTA extension package configuration examples described earlier in this
document require a user name, password, and SMTP relay domain name specific to a single email
account. The email provider may or may not accept email messages with a different sender address.

Methodology #1 -- Shared Email Account for all MuntsOS Target Computers

1. Create an email account like muntsos.mydomain@gmail.com. For Gmail and other mail
service providers that require OAuth2 or other two factor authentication, you will also need to
create an application password after your email account has been created.

2. Install one of the emailrelay or dma MTA extension packages on each MuntsOS target
computer.

3. Edit the MTA configuration files in /usr/local/etc on each MuntsOS target computer, to plug
in the user name (usually the email address), password, SMTP relay domain name, and TCP port
number (usually 587).

Advantage: Very quick and easy to set up. You might even be able to use your existing email
account.

Disadvantage: Emails from all of your MuntsOS Target Computers will appear to be from the same
sender. You will need to include information in each message body about what computer the
message originated from.

MuntsOS Application Note #16 -- Sending Email Page 8 of 10

https://support.google.com/accounts/answer/185833?hl=en
https://datatracker.ietf.org/wg/oauth/about

Methodology #2 -- Separate Email Account for each MuntsOS Target Computer

1. Create an email account like mytarget.muntsos.mydomain@gmail.com for each
MuntsOS target computer. For Gmail and other mail service providers that require OAuth2 or
other two factor authentication, you will also need to create an application password after your
email account has been created.

2. Install one of the emailrelay or dma MTA extension packages on each MuntsOS target
computer.

3. Edit the MTA configuration files in /usr/local/etc on each MuntsOS target computer, to plug
in the user name (usually the email address), password, SMTP relay domain name, and TCP port
number (usually 587).

Advantage: You can immediately tell in your inbox which MuntsOS target computer a notification
email came from.

Disadvantage: You have to create and administer many email accounts. Some free email service
providers, e.g. Gmail, limit the number of accounts you can create.

Methodology #3 -- Fictitious Email Account for each MuntsOS Target Computer

Warning: This is likely only possible if you have administrative control over your SMTP relay and its
DNS records, such as bethel.munts.net described earlier in this document.

1. Install the mailtunnel (or possibly emailrelay or dma) MTA extension package on each
MuntsOS target computer.

2. For emailrelay or dma, edit the MTA configuration files in /usr/local/etc on each
MuntsOS target computer, to plug in the user name (usually the email address), password, SMTP
relay domain name, and TCP port number (usually 587).

3. If required by your email service provider, create a file /root/.mail on each MuntsOS target
computer, containing something like the following:

address {
 email-addr mytarget@mydomain.com;
};

This instructs the mail program to use mytarget@mydomain.com for the sender address
instead of something like root@mytarget.mydomain.com. If you use a different MUA or
connect to localhost:25 to dispatch emails, you will have to specify the sender address some
other way.

Some mail service providers attempt to validate the sender domain name even for messages arriving
from an authenticated SMTP relay. As a concrete example, using bethel.munts.net as an
SMTP relay, Gmail refuses messages from root@tarsus.munts.net but accepts messages
from tarsus@munts.net.

MuntsOS Application Note #16 -- Sending Email Page 9 of 10

https://support.google.com/accounts/answer/185833?hl=en

4. If your email service provider allows it, you should create an email alias or redirection for each
fictitious sender address that diverts incoming emails to your regular email account. This will
enable you to receive delivery error messages or other replies.

Advantage: You don't need to create email accounts for any of your MuntsOS target computers.
You can immediately tell in your inbox which MuntsOS target computer a notification email came
from.

Disadvantage: If your email provider SMTP relay blocks messages with a sender address different
from which you authenticated with, you have to use a privately administered SMTP relay. .mail
only works if you use the mail command to create emails.

Tip: The Linux Simple I/O Library provides an Ada package Email_Mail and a .Net class
IO.Objects.Email.Mail.Relay for originating an email using the mail command.

MuntsOS Application Note #16 -- Sending Email Page 10 of 10

https://github.com/pmunts/libsimpleio

