
Operating System Services

delay(usecs)

This service pauses program execution for the specified number of microseconds.

Example Program

while true
 print "Tick";
 delay(1000000)
 print "Tock";
 delay(1000000)
wend

Analog to Digital Converter Services

These services allow reading from Linux kernel ADC input pins using libsimpleio.

fd = libsimpleio.adc_ open(chip, channel)

This service opens an ADC input pin.

The chip and channel parameters select the ADC input pin.

This service returns a Linux file descriptor number that will be used as a handle for all of the other
ADC services.

libsimpleio.adc_ close(fd)

This service closes an ADC input pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.adc_open().

sample = libsimpleio.adc_ read(fd)

This service reads a single integer sampled data value from an ADC input pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.adc_open().

This service returns the integer sampled data value.

ADC Example Program

fd = libsimpleio.adc_open(0, 0)

while true
 print "Sample: "
 print libsimpleio.adc_read(fd);
 delay(1000000)
wend

Digital to Analog Converter Services

These services allow writing to Linux kernel DAC output pins using libsimpleio.

fd = libsimpleio.dac_ open(chip, channel)

This service opens a DAC output pin.

The chip and channel parameters select the DAC output pin.

This service returns a Linux file descriptor number that will be used as a handle for all of the other
DAC services.

libsimpleio.dac_ close(fd)

This service closes a DAC output pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.dac_open().

libsimpleio.dac_write (fd, sample)

This service writes a single integer sampled data value to a DAC output pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.adc_open().

The sample parameter must be an integer value within the acceptable range for the particular DAC
hardware (usually 0 to 2Resolution-1). An ordinary 12-bit DAC with single-ended outputs will usually
have an acceptable range of 0 to 212-1 or 0 to 4095 while an exotic 12-bit DAC with true differential
outputs might have an acceptable range of -2047 to 2047.

DAC Example Program

fd = libsimpleio.dac_open(0, 0)

while true
 for n = 0 to 4095
 dac_write(fd, n)
 next n
wend

General Purpose Input/Output Services

These services allow manipulating Linux kernel GPIO pins using libsimpleio.

fd = libsimpleio.gpio_ open(chip, channel , dir, state)

This service opens a GPIO pin.

The chip and channel parameters select the GPIO pin. The dir parameter selects the data
direction (0=input, 1=output). The state parameter selects the initial state for an output pin (0=off or
low, 1=on or high).

This service returns a Linux file descriptor number that will be used as a handle for all of the other
GPIO services.

libsimpleio.gpio_ close(fd)

This service closes a GPIO pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.gpio_open().

state = libsimpleio.gpio_ read(fd)

This service reads from a GPIO pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.gpio_open().

This service returns the state of the GPIO pin (0=off or low, 1=on or high)

libsimpleio.gpio_ write(fd, state)

This services writes to a GPIO pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.gpio_open().

The state parameter indicates the value written to the GPIO pin (0=off or low, 1=on or high).

GPIO Example Program

fd = libsimpleio.gpio_open(0, 26, 1, 0)

while true
 libsimpleio.gpio_write(fd, NOT libsimpleio.gpio_read(fd))
wend

Pulse Width Modulated Output Services

These services allow controlling Linux kernel PWM output pins using libsimpleio.

fd = libsimpleio.pwm_ open(chip, channel, period, ontime)

The chip and channel parameters select the PWM output pin.

The period parameter sets the PWM pulse period in nanoseconds.

The ontime parameter sets the initial PWM pulse width in nanoseconds.

libsimpleio.pwm_ close(fd)

This service closes a PWM output pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.pwm_open().

libsimpleio.pwm_ write(fd, ontime)

This services writes to a PWM output pin.

The fd parameter must be a file descriptor number previously returned by
libsimpleio.pwm_open().

The ontime sets the PWM pulse width in nanoseconds.

PWM Example Program

fd = libsimpleio.pwm_open(0, 0, 10000000, 0)

while true
 for ontime = 0 to 10000000 step 10000
 libsimpleio.pwm_write(fd, ontime)
 delay(5000)
 next ontime
wend

