V "GNAT Lib v15" A -nostdinc A -O2 A -Wextra A -Wall A -gnatwa A -g A -gnatp A -gnatg A -march=armv8-a A -mlittle-endian A -mabi=lp64 P ZX RN RV NO_EXCEPTIONS RV NO_FLOATING_POINT RV NO_RECURSION RV NO_STANDARD_STORAGE_POOLS RV NO_UNCHECKED_CONVERSION RV NO_DYNAMIC_SIZED_OBJECTS RV NO_IMPLEMENTATION_ATTRIBUTES RV NO_IMPLEMENTATION_PRAGMAS U system.fat_gen%b s-fatgen.adb 4afcca01 NE OL PK GE W ada%s ada.ads ada.ali W ada.unchecked_conversion%s W system%s system.ads system.ali W system.unsigned_types%s s-unstyp.ads s-unstyp.ali N A591:10 codepeer intentional "test always true" "Check for invalid float" N A593:10 codepeer intentional "condition predetermined" "Check for invalid float" N A601:10 codepeer intentional "dead code" "Check float range." N A778:16 codepeer intentional "overflow check" "Infinity produced" N A780:16 codepeer intentional "divide by zero" "Infinity produced" N A814:16 codepeer intentional "test always false" "test always false in some instantiations" N A842:10 codepeer intentional "test always true" "Check for invalid float" N A844:10 codepeer intentional "condition predetermined" "Check for invalid float" N A852:10 codepeer intentional "dead code" "Check float range." U system.fat_gen%s s-fatgen.ads 02329bcc BN NE OL PU PK GE W system%s system.ads system.ali D ada.ads 20250808065140 76789da1 ada%s D a-unccon.ads 20250808065140 0e9b276f ada.unchecked_conversion%s D system.ads 20250808065140 d0bef732 system%s D s-fatgen.ads 20250808065140 d28c6cfe system.fat_gen%s D s-fatgen.adb 20250808065140 6cc1fec9 system.fat_gen%b D s-unstyp.ads 20250808065140 fa2a7f59 system.unsigned_types%s G a e G c Z s b [fat_gen system 41 16 none] X 1 ada.ads 18K9*Ada 22e8 5|37r6 946r13 X 2 a-unccon.ads 23v14*Unchecked_Conversion 5|37w10 946r17 X 3 system.ads 37K9*System 156e11 4|41r9 216r5 5|38r6 43r14 724r27 946r49 989r5 67M9*Address 5|946r56 81V14*"="{boolean} 5|44r35 X 4 s-fatgen.ads 39F10 T 54r45 54r68 59r36 59r68 64r43 64r68 68r46 68r68 72r36 75r36 75r68 . 80r36 80r68 83r36 83r68 89r36 89r68 92r36 92r68 96r36 96r68 105r36 105r68 . 117r39 117r68 140r36 140r68 147r36 147r68 156r36 156r68 168r36 168r68 176r36 . 176r68 184r40 196r31 5|44r19 47r19 47r24 47r27 50r35 53r22 62r19 67r36 . 68r36 113r30 150r30 150r44 156r30 156r40 163r36 163r46 178r26 178r36 179r21 . 194r33 194r58 195r18 206r38 206r48 207r20 207r25 213r11 213r16 229r30 229r44 . 230r11 230r16 254r18 284r27 285r16 296r30 296r40 297r12 297r17 308r14 310r30 . 310r43 469r24 469r34 470r21 485r27 485r37 486r16 497r31 497r60 499r14 525r26 . 525r36 526r14 540r35 540r45 541r16 542r16 572r24 572r34 574r14 581r23 581r33 . 585r14 590r17 590r39 610r31 610r41 611r18 612r18 613r18 614r18 615r18 616r18 . 617r18 623r18 691r27 691r37 692r16 693r16 720r26 720r53 727r12 727r17 772r16 . 821r24 832r23 832r33 836r14 841r18 841r39 876r29 876r39 877r16 883r17 886r20 . 910r36 910r46 911r25 912r16 913r16 943r40 944r35 973r13 41k16*Fat_Gen 3|37k9 4|39z10 216l12 216e19 5|43b21 989l12 989t19 44I12*UI{integer} 64r57 72r68 83r54 147r52 5|150r58 194r47 196r18 229r58 . 284r37 286r16 487r16 497r49 498r14 618r18 619r18 620r18 720r42 54V13*Adjacent{39F10} 54>32 54>35 5|163b13 172l8 172t16 54*32 X{39F10} 5|163b23 165r20 166r17 167r23 168r23 170r23 54*35 Towards{39F10} 5|163b26 165r10 167r13 59V13*Ceiling{39F10} 59>32 5|178b13 188l8 188t15 59*32 X{39F10} 5|178b22 179r38 181r10 183r13 184r17 64V13*Compose{39F10} 64>32 64>46 208r19 5|194b13 200l8 200t15 649s15 64*32 Fraction{39F10} 5|194b22 198r18 64i46 Exponent{44I12} 5|194b36 199r33 68V13*Copy_Sign{39F10} 68>32 68>39 209r19 5|206b13 223l8 223t17 68*32 Value{39F10} 5|206b24 213r27 68*39 Sign{39F10} 5|206b31 207r36 72V13*Exponent{44I12} 72>32 210r19 5|284b13 290l8 290t16 509s15 643s19 72*32 X{39F10} 5|284b23 288r18 75V13*Floor{39F10} 75>32 5|469b13 479l8 479t13 75*32 X{39F10} 5|469b20 470r38 472r10 474r18 475r17 80V13*Fraction{39F10} 80>32 211r19 5|485b13 491l8 491t16 80*32 X{39F10} 5|485b23 489r18 83V13*Leading_Part{39F10} 83>32 83>39 5|497b13 514l8 514t20 83*32 X{39F10} 5|497b27 503r17 509r25 510r36 83i39 Radix_Digits{44I12} 5|497b34 502r10 505r13 509r30 89V13*Machine{39F10} 89>32 212r19 5|525b13 531l8 531t15 89*32 X{39F10} 5|525b22 529r15 92V13*Machine_Rounding{39F10} 92>32 5|540b13 563l8 563t24 92*32 X{39F10} 5|540b31 545r33 546r21 552r10 555r13 561r17 96V13*Model{39F10} 96>32 213r19 5|572b13 575l8 575t13 96*32 X{39F10} 5|572b20 574r25 105V13*Pred{39F10} 105>32 5|170s17 581b13 604l8 604t12 105*32 X{39F10} 5|581b19 585r10 590r13 590r34 595r32 600r17 117V13*Remainder{39F10} 117>32 117>35 5|610b13 685l8 685t17 117*32 X{39F10} 5|610b24 630r10 632r17 635r18 117*35 Y{39F10} 5|610b27 626r10 638r16 673r19 677r19 681r37 140V13*Rounding{39F10} 140>32 5|691b13 714l8 714t16 140*32 X{39F10} 5|691b23 696r33 697r21 703r10 706r13 712r17 147V13*Scaling{39F10} 147>32 147>39 5|199s14 510s27 511s15 720b13 761s20 . 826l8 826t15 147*32 X{39F10} 5|720b22 727r28 746r10 747r17 147i39 Adjustment{44I12} 5|720b29 746r54 754r13 761r39 769r13 786r16 789r16 . 791r30 803r27 156V13*Succ{39F10} 156>32 5|168s17 832b13 855l8 855t12 156*32 X{39F10} 5|832b19 836r10 841r13 841r35 846r30 851r17 168V13*Truncation{39F10} 168>32 5|179s26 470s26 510s15 545s17 696s17 876b13 . 904l8 904t18 916s17 923s26 168*32 X{39F10} 5|876b25 880r21 883r28 888r26 892r13 895r16 901r20 176V13*Unbiased_Rounding{39F10} 176>32 5|910b13 937l8 937t25 176*32 X{39F10} 5|910b32 911r34 926r10 929r13 935r17 184V13*Valid{boolean} 184^20 214r19 5|943b13 987l8 987t13 184p20 X(39F10) 5|943b20 949r49 196A9*S(character) 197r25 197P9*P(196A9) X 5 s-fatgen.adb 47*4 Rad{4|39F10} 53r33 62r24 310r35 50i4 Mantissa{integer} 62r32 114r30 263r26 343r19 377r19 411r19 439r19 502r26 . 721r22 754r28 761r53 789r42 53*4 Invrad{4|39F10} 255r34 255r46 62*4 RM1{4|39F10} 262r25 761r34 882r20 886r31 886r47 67i4 IEEE_Emin{integer} 72r41 76r39 133r58 138r41 259r19 751r19 786r29 789r30 . 790r24 965r20 970r33 68i4 IEEE_Emax{integer} 72r58 133r46 138r29 253r19 746r32 769r26 960r16 965r33 72I12 IEEE_Erange{integer} 236r22 733r22 741r20 954r22 76i4 IEEE_Ebias{integer} 237r65 275r37 734r65 808r37 955r65 109N4 Siz 110r30 113r39 113r50 114r46 114r57 133r23 143r43 348r36 355r37 . 382r36 389r37 416r36 417r40 418r39 428r42 444r36 445r47 446r39 456r42 110M9 Float_Word 123r58 132r26 133r34 137r24 138r17 143r25 275r25 808r25 113i4 N{natural} 115r48 123r48 114i4 NR{natural} 115r51 115i4 Rep_Last{natural} 128r30 337r35 371r27 377r46 405r35 433r27 439r46 . 445r30 984r39 123A9 Float_Rep(110M9) 124r36 209r15 215r15 232r13 299r13 729r13 . 948r13 128i4 MSW{natural} 220r14 221r17 221r52 237r30 241r41 274r15 274r29 332r15 . 332r28 336r13 404r13 734r30 738r41 807r15 807r29 955r30 982r18 982r31 132m4 Exp_Factor{110M9} 138r58 237r51 275r55 734r51 808r58 955r51 137m4 Exp_Mask{110M9} 237r39 274r42 734r39 807r42 955r39 143m4 Sign_Mask{110M9} 221r30 221r61 241r50 332r41 738r50 982r44 150U14 Decompose 150>25 150<33 150<47 198s7 229b14 262s10 278l8 278t17 288s7 . 489s7 646s10 647s10 150*25 XX{4|39F10} 229b25 230r27 150*33 Frac{4|39F10} 229b33 249m10 255m10 262m30 276m10 150i47 Expo{4|44I12} 229b47 248m10 254m10 262m36 263m10 263r18 270m10 156V13 Finite_Succ{4|39F10} 156>26 296b13 463l8 463t19 595s18 846s17 156*26 X{4|39F10} 296b26 297r28 316r16 319r19 179*7 XT{4|39F10} 182r17 183r17 186r17 195*7 Arg_Frac{4|39F10} 198m28 199r23 196i7 Arg_Exp{4|44I12} 198m38 207*7 S{4|39F10} 210r29 209a7 Rep_S{123A9} 210m11 210r11 221r45 213*7 V{4|39F10} 216m29 216r29 222r14 215a7 Rep_V{123A9} 216m11 216r11 220m7 221r10 230*7 X{4|39F10} 233m27 233r27 247r10 249r18 262r21 276r18 232a7 Rep{123A9} 233m11 233r11 237r25 241r36 274m10 274r24 236i7 Exp{72I12} 253r13 259r13 270r18 241b7 Minus{boolean} 255r22 285*7 X_Frac{4|39F10} 288m21 286i7 X_Exp{4|44I12} 288m29 289r14 297*7 XX{4|39F10} 300m27 300r27 317m16 318r24 329r10 462r14 299a7 Rep{123A9} 300m11 300r11 332m10 332r23 338m16 338r27 348r22 354r25 . 355m22 364r29 372m16 372r27 382r22 388r25 389m22 398r29 406m16 406r27 416r22 . 417r25 418m25 428r29 434m16 434r27 444r22 445r25 446m25 456r29 310*13 Small{4|39F10} 316r21 320r23 337i17 J{integer} 338r21 338r32 343r42 348r27 354r30 355r27 364r34 371i17 J{integer} 372r21 372r32 377r42 382r27 388r30 389r27 398r34 405i17 J{integer} 406r21 406r32 411r42 416r27 418r30 428r34 433i17 J{integer} 434r21 434r32 439r42 444r27 446r30 456r34 470*7 XT{4|39F10} 473r17 474r13 477r17 486*7 X_Frac{4|39F10} 489m21 490r14 487i7 X_Exp{4|44I12} 489m29 498i7 L{4|44I12} 509m10 510r40 511r27 499*7 Y{4|39F10} 510m10 511r24 499*10 Z{4|39F10} 511m10 512r17 526*7 Temp{4|39F10} 527r24 529m7 530r14 541*7 Result{4|39F10} 545m7 546r25 549m10 549r20 553r17 556r18 542*7 Tail{4|39F10} 546m7 548r10 611*7 A{4|39F10} 672m10 676m10 680r10 680r25 612*7 B{4|39F10} 673m10 677m10 680r14 680r29 613*7 Arg{4|39F10} 632m10 635m10 640r10 642r22 646r21 652r22 614*7 P{4|39F10} 638m7 640r16 643r29 647r21 649m10 655r28 657r39 662m13 662r18 615*7 P_Frac{4|39F10} 647m26 649r24 616*7 Sign_X{4|39F10} 631m10 634m10 684r14 617*7 IEEE_Rem{4|39F10} 642m10 652m10 655r16 657m16 657r28 672r15 676r15 . 681m10 681r22 684r23 618i7 Arg_Exp{4|44I12} 646m36 649r32 650r15 619i7 P_Exp{4|44I12} 643m10 647m36 650r25 671r10 620i7 K{4|44I12} 650m10 654r34 621b7 P_Even{boolean} 641m10 651m10 656m16 659m16 680r44 623*7 Arg_Frac{4|39F10} 646m26 654i14 Cnt{integer} 692*7 Result{4|39F10} 696m7 697r25 700m10 700r20 704r17 707r18 693*7 Tail{4|39F10} 697m7 699r10 724K15 UST=724:34 725r16 821r27 727*7 XX{4|39F10} 730m27 730r27 755m13 756r36 756r44 761r29 776m16 777r45 . 777r59 796m16 797r39 797r47 817m16 817r22 821m13 821r19 824r17 729a7 Rep{123A9} 730m11 730r11 734r25 738r36 807m10 807r24 733i7 Exp{72I12} 746r26 751r13 769r38 786r41 789r53 791r24 803r21 738b7 Minus{boolean} 756r24 777r27 797r27 741i7 Expi{72I12} 791m16 804m13 810r13 813r16 818m16 821r59 741i13 Expf{72I12} 790m16 791r43 803m13 808r50 877*7 Result{4|39F10} 880m7 882r10 886m10 886r37 888r13 889m13 889r23 893r20 . 896r21 911*7 Abs_X{4|39F10} 916r29 917r17 912*7 Result{4|39F10} 916m7 917r25 920m10 920r20 923m10 923r39 927r17 930r18 913*7 Tail{4|39F10} 917m7 919r10 922r13 944P12 Access_T(4|39F10) 946r39 949r39 945V16 To_Address[2|23]{3|67M9} 949s27 948a7 Rep{123A9} 949m11 949r11 955r25 982m13 982r26 984r51 954i7 Exp{72I12} 960r10 965r13 970r27 984i29 J{integer} 984r56 X 6 s-unstyp.ads 38K16*Unsigned_Types 5|38w13 724r34 6|256e26 46M9*Long_Long_Unsigned 5|725r20 821r31