V "GNAT Lib v15" A -nostdinc A -O2 A -Wextra A -Wall A -gnatwa A -g A -gnatp A -gnatg A -march=armv8-a A -mlittle-endian A -mabi=lp64 P ZX RN RV NO_EXCEPTIONS RV NO_FLOATING_POINT RV NO_DYNAMIC_SIZED_OBJECTS RV NO_IMPLEMENTATION_ASPECT_SPECIFICATIONS RV NO_IMPLEMENTATION_ATTRIBUTES RV NO_IMPLEMENTATION_PRAGMAS U ada.numerics.generic_real_arrays%b a-ngrear.adb cea46082 NE OL PK GE W ada%s ada.ads ada.ali W ada.containers%s a-contai.ads a-contai.ali W ada.containers.generic_anonymous_array_sort%s W ada.numerics%s a-numeri.ads a-numeri.ali W system%s system.ads system.ali W system.generic_array_operations%s s-gearop.adb s-gearop.ali N A577:7 codepeer false_positive "divide by zero" "H, P /= 0" U ada.numerics.generic_real_arrays%s a-ngrear.ads 02278bf2 BN NE OL PU PK GE W ada.numerics%s a-numeri.ads a-numeri.ali D ada.ads 20250808065140 76789da1 ada%s D a-contai.ads 20250808065140 61e5e089 ada.containers%s D a-cgaaso.ads 20250808065140 0179e0e0 ada.containers.generic_anonymous_array_sort%s D a-cgaaso.adb 20250808065140 a55922a1 ada.containers.generic_anonymous_array_sort%b D a-cogeso.ads 20250808065140 fb85939d ada.containers.generic_sort%s D a-numeri.ads 20250808065140 84bea7a3 ada.numerics%s D a-ngrear.ads 20250808065140 86992c51 ada.numerics.generic_real_arrays%s D a-ngrear.adb 20250808065140 6cd209c8 ada.numerics.generic_real_arrays%b D a-unccon.ads 20250808065140 0e9b276f ada.unchecked_conversion%s D system.ads 20250808065140 d0bef732 system%s D s-exctab.ads 20250808065140 91bef6ef system.exception_table%s D s-gearop.ads 20250808065140 f52852c9 system.generic_array_operations%s D s-stalib.ads 20250808065140 1c9580f6 system.standard_library%s G a e G c Z s b [generic_real_arrays ada__numerics 38 22 none] X 1 ada.ads 18K9*Ada 22e8 7|38r9 142r5 8|50r6 50r55 55r14 801r5 X 2 a-contai.ads 16K13*Containers 28e19 8|50r10 50r59 X 3 a-cgaaso.ads 39u26*Generic_Anonymous_Array_Sort 2|16k13 8|50w21 754r29 X 6 a-numeri.ads 20K13*Numerics 1|18k9 6|36e17 7|38r13 142r9 8|55r18 801r9 X 7 a-ngrear.ads 37F9 Real 43r52 44r70 57r54 59r54 63r25 64r46 65r46 94r25 95r46 96r46 103r50 . 8|59r30 62r24 67r23 72r23 73r23 79r23 83r26 90r43 102r49 106r36 106r53 . 115r41 118r35 127r36 127r53 128r24 129r24 139r41 140r23 153r29 154r29 161r29 . 162r29 169r29 170r29 171r29 179r29 180r29 181r29 189r29 190r29 197r29 198r29 . 205r29 206r29 207r29 215r29 216r29 217r29 225r29 226r29 227r29 234r29 235r29 . 236r29 243r29 244r29 245r29 252r29 253r29 254r29 261r29 262r29 263r29 270r29 . 271r29 272r29 279r29 280r29 281r29 289r29 290r29 291r29 299r29 300r29 301r29 . 309r29 310r29 311r29 318r29 319r29 320r29 327r29 328r29 338r29 339r29 346r29 . 347r29 353r33 356r33 360r29 367r29 412r25 415r46 418r25 421r46 426r52 447r46 . 450r46 457r48 470r50 473r11 570r33 570r46 571r10 573r36 573r49 580r60 588r60 . 589r16 606r19 607r19 653r58 680r37 682r37 683r37 684r37 685r37 38k22*Generic_Real_Arrays 6|20k13 7|37z9 39r17 142l18 142e37 8|55b27 801l18 . 801t37 43A9*Real_Vector 50r28 50r54 51r28 51r54 52r28 52r54 54r34 54r54 . 55r34 55r54 57r34 59r28 63r46 63r66 64r25 64r66 65r25 65r66 72r36 87r32 . 89r25 89r66 90r46 90r66 100r41 100r61 107r50 111r21 8|68r23 97r29 110r32 . 155r29 156r29 172r29 173r29 174r29 191r29 192r29 208r29 209r29 210r29 228r29 . 229r29 246r29 247r29 264r29 265r29 273r29 274r29 283r29 284r29 292r29 294r29 . 312r29 313r29 329r29 340r29 341r29 353r49 368r29 378r26 378r46 384r32 384r52 . 394r26 394r46 400r32 400r52 412r44 412r64 415r25 415r64 426r32 429r32 432r25 . 432r66 435r46 435r66 447r25 447r64 457r28 460r28 460r48 485r21 497r50 499r23 . 524r29 604r19 605r19 731r41 731r61 742r32 798r36 44A9*Real_Matrix 78r32 78r52 79r32 79r52 80r32 80r52 81r32 . 81r52 83r32 83r52 84r32 84r52 85r32 85r52 87r52 89r46 90r25 94r46 94r66 . 95r25 95r66 96r25 96r66 100r24 101r27 101r47 102r26 102r46 103r30 107r30 . 110r17 112r21 119r38 8|63r24 69r23 74r23 80r23 84r26 86r31 96r25 98r29 . 102r60 111r32 163r29 164r29 182r29 183r29 184r29 199r29 200r29 218r29 219r29 . 220r29 237r29 238r29 255r29 256r29 266r29 282r29 293r29 302r29 303r29 304r29 . 321r29 322r29 348r29 349r29 353r62 356r49 361r29 381r26 381r46 387r32 387r52 . 397r26 397r46 403r32 403r52 418r44 418r64 421r25 421r64 429r52 432r46 435r25 . 440r32 440r52 450r25 450r64 463r28 463r48 470r30 471r11 472r11 484r17 486r21 . 497r30 501r23 513r26 513r46 523r25 525r29 556r32 731r24 734r27 734r47 743r32 . 774r28 774r48 776r18 788r38 50V14*"+"{43A9} 50>20 8|378b14 50a20 Right{43A9} 8|378b18 51V14*"-"{43A9} 51>20 8|394b14 51a20 Right{43A9} 8|394b18 52V14*"abs"{43A9} 52>20 8|460b14 52a20 Right{43A9} 8|460b20 54V14*"+"{43A9} 54>20 54>26 8|384b14 717s27 54a20 Left{43A9} 8|384b18 54a26 Right{43A9} 8|384b24 55V14*"-"{43A9} 55>20 55>26 8|400b14 55a20 Left{43A9} 8|400b18 55a26 Right{43A9} 8|400b24 57V14*"*" 57>20 57>26 8|426b14 57a20 Left{43A9} 8|426b18 57a26 Right{43A9} 8|426b24 59V14*"abs" 59>20 8|457b14 59a20 Right{43A9} 8|457b20 63V14*"*"{43A9} 63>18 63>38 8|412b14 63*18 Left 8|412b18 63a38 Right{43A9} 8|412b36 64V14*"*"{43A9} 64>18 64>38 8|415b14 64a18 Left{43A9} 8|415b18 64*38 Right 8|415b38 65V14*"/"{43A9} 65>18 65>38 8|447b14 65a18 Left{43A9} 8|447b18 65*38 Right 8|447b38 69V13*Unit_Vector{43A9} 70>7 71>7 72>7 141r19 8|795b13 70i7 Index{integer} 8|796b7 71i7 Order{positive} 8|797b7 72i7 First{integer} 8|798b7 78V14*"+"{44A9} 78>24 8|381b14 78a24 Right{44A9} 8|381b18 79V14*"-"{44A9} 79>24 8|397b14 79a24 Right{44A9} 8|397b18 80V14*"abs"{44A9} 80>24 8|463b14 80a24 Right{44A9} 8|463b20 81V13*Transpose{44A9} 81>24 139r19 8|87s7 774b13 779l8 779t17 81a24 X{44A9} 8|774b24 776r31 776r44 777r21 83V14*"+"{44A9} 83>18 83>24 8|387b14 83a18 Left{44A9} 8|387b18 83a24 Right{44A9} 8|387b24 84V14*"-"{44A9} 84>18 84>24 8|403b14 84a18 Left{44A9} 8|403b18 84a24 Right{44A9} 8|403b24 85V14*"*"{44A9} 85>18 85>24 8|440b14 85a18 Left{44A9} 8|440b18 85a24 Right{44A9} 8|440b24 87V14*"*"{44A9} 87>18 87>24 8|429b14 87a18 Left{43A9} 8|429b18 87a24 Right{43A9} 8|429b24 89V14*"*"{43A9} 89>18 89>38 8|432b14 89a18 Left{43A9} 8|432b18 89a38 Right{44A9} 8|432b38 90V14*"*"{43A9} 90>18 90>38 8|435b14 90a18 Left{44A9} 8|435b18 90a38 Right{43A9} 8|435b38 94V14*"*"{44A9} 94>18 94>38 8|418b14 94*18 Left 8|418b18 94a38 Right{44A9} 8|418b36 95V14*"*"{44A9} 95>18 95>38 8|421b14 95a18 Left{44A9} 8|421b18 95*38 Right 8|421b38 96V14*"/"{44A9} 96>18 96>38 8|450b14 96a18 Left{44A9} 8|450b18 96*38 Right 8|450b38 100V13*Solve{43A9} 100>20 100>37 8|731b13 100a20 A{44A9} 8|731b20 100a37 X{43A9} 8|731b37 101V13*Solve{44A9} 101>20 101>23 8|514s7 734b13 101a20 A{44A9} 8|734b20 101a23 X{44A9} 8|734b23 102V13*Inverse{44A9} 102>22 137r19 8|513b13 102a22 A{44A9} 8|514r14 514r38 515r41 516r41 103V13*Determinant 103>26 8|470b13 477l8 477t19 103a26 A{44A9} 8|470b26 471r26 472r24 107V13*Eigenvalues{43A9} 107>26 136r19 8|497b13 507l8 507t19 107a26 A{44A9} 8|497b26 499r36 503r21 109U14*Eigensystem 110>7 111<7 112<7 8|483b14 491l8 491t19 110a7 A{44A9} 8|484b7 489r15 111a7 Values{43A9} 8|485b7 489m18 490m25 112a7 Vectors{44A9} 8|486b7 489m26 490m33 116V13*Unit_Matrix{44A9} 117>7 118>7 119>7 140r19 8|514s17 637s24 785b13 117i7 Order{positive} 8|786b7 118i7 First_1{integer} 8|515r30 787b7 119i7 First_2{integer} 8|516r30 788b7 X 8 a-ngrear.adb 57K12 Ops=57:31 61r37 66r29 71r39 78r33 82r32 118r25 59V13 Is_Non_Zero{boolean} 59b13 59>26 64r24 59*26 X 59r60 61U14 Back_Substitute[12|61] 12|492i22 516i22 66V13 Diagonal[12|74]{7|43A9} 629s17 71U14 Forward_Eliminate[12|101] 475s7 12|493i22 517i22 78U14 Swap_Column[12|547] 761s13 82U14 Transpose[12|559] 777s10 86V13 Is_Symmetric{boolean} 86b13 86>27 625s17 86a27 A{7|44A9} 87r18 87r23 90V13 Is_Tiny{boolean} 90b13 90>22 90>29 574s13 673s28 674s28 90*22 Value{7|37F9} 91r37 90*29 Compared_To{7|37F9} 91r11 91r49 574r25 673r51 674r51 95U14 Jacobi 96>7 97<7 98<7 99>7 489s7 503s13 522b14 725l8 725t14 96a7 A{7|44A9} 523b7 554r52 603r36 97a7 Values{7|43A9} 524b7 622r13 629m7 658r18 717m10 717r20 98a7 Vectors{7|44A9} 525b7 618r20 618r52 636m7 707r31 708m33 708r33 708r55 . 709m33 709r33 709r55 99b7 Compute_Vectors{boolean} 489r35 503r41 526b7 617r10 636r22 102V13 Length[12|116]{natural} 514s30 554s44 106U14 Rotate 106=22 106=25 106>42 106>47 127b14 133l8 133t14 696s25 700s25 . 704s25 708s25 106*22 X{7|37F9} 127b22 128r32 131m7 106*25 Y{7|37F9} 127b25 129r32 132m7 106*42 Sin{7|37F9} 127b42 131r20 132r20 106*47 Tau{7|37F9} 127b47 131r43 132r43 109U14 Sort_Eigensystem 110=7 111=7 112>7 490s7 504s13 741b14 768l8 768t24 110a7 Values{7|43A9} 742b7 751r10 751r26 759m16 759r16 759m31 759r31 761r42 . 762r43 767r13 767r27 111a7 Vectors{7|44A9} 743b7 761m26 761r57 762r58 112b7 Compute_Vectors{boolean} 490r42 504r48 744b7 760r13 115U14 Swap 115=20 115=26 139b14 144l8 144t12 759s10 115*20 Left{7|37F9} 139b20 140r31 142m7 115*26 Right{7|37F9} 139b26 142r15 143m7 118V13 Sqrt[12|538] 571s41 682s51 12|372i21 128*7 Old_X{7|37F9} 131r12 131r35 132r27 129*7 Old_Y{7|37F9} 131r27 132r12 132r35 140*7 Temp{7|37F9} 143r16 149K12 Instantiations 372l8 372e22 379r14 382r14 385r14 388r14 395r14 398r14 . 401r14 404r15 413r14 416r14 419r14 422r14 427r14 430r14 433r14 436r14 441r14 . 448r14 451r14 458r14 461r14 464r14 732r15 735r15 789r14 799r14 151V16 "+"[12|135]{7|43A9} 379r30 159V16 "+"[12|148]{7|44A9} 382r30 167V16 "+"[12|164]{7|43A9} 385r30 177V16 "+"[12|216]{7|44A9} 388r30 187V16 "-"[12|135]{7|43A9} 395r30 195V16 "-"[12|148]{7|44A9} 398r30 203V16 "-"[12|164]{7|43A9} 401r30 213V16 "-"[12|216]{7|44A9} 404r31 223V16 "*"[12|313]{7|43A9} 413r30 232V16 "*"[12|332]{7|44A9} 419r30 241V16 "*"[12|277]{7|43A9} 416r30 250V16 "*"[12|296]{7|44A9} 422r30 259V16 "*"[12|390]{7|44A9} 430r30 268V16 "*"[12|353]{7|37F9} 427r30 277V16 "*"[12|413]{7|43A9} 436r30 287V16 "*"[12|442]{7|43A9} 433r30 297V16 "*"[12|473]{7|44A9} 441r30 307V16 "/"[12|277]{7|43A9} 448r30 316V16 "/"[12|296]{7|44A9} 451r30 325V16 "abs"[12|373] 458r30 336V16 "abs"[12|135]{7|43A9} 461r30 344V16 "abs"[12|148]{7|44A9} 464r30 352V16 Solve[12|497]{7|43A9} 732r30 355V16 Solve[12|521]{7|44A9} 735r30 358V16 Unit_Matrix[12|622]{7|44A9} 789r29 365V16 Unit_Vector[12|639]{7|43A9} 799r29 471a7 M{7|44A9} 475m26 475r26 472a7 B{7|44A9} 475m29 475r29 473*7 R 475m32 476r14 499a14 Values{7|43A9} 503m24 504m31 504r31 501a13 Vectors{7|44A9} 503m32 504m39 504r39 553N7 Max_Iterations 640r37 554i7 N{natural} 556r50 556r58 592r26 593r35 604r37 605r37 618r42 618r74 . 622r30 637r37 653r64 661r26 662r35 703r42 556A15 Square_Matrix{7|44A9} 580r38 588r38 603r19 570V16 Compute_Tan{7|37F9} 570b16 570>29 576s15 570*29 C{7|37F9} 571r37 571r53 571r61 576r28 573V16 Compute_Tan{7|37F9} 573b16 573>29 573>32 681s24 573*29 P{7|37F9} 574r22 575r15 576r44 573*32 H{7|37F9} 574r40 575r19 576r33 580V16 Sum_Strict_Upper{7|37F9} 580>34 588b16 599l11 599t27 649s17 580a34 M{556A15} 588b34 594r33 589*10 Sum{7|37F9} 594m16 594r23 598r17 592i14 Row{integer} 593r24 594r36 593i17 Col{integer} 594r41 603a7 M{556A15} 625r31 629r27 649r35 673r37 674r37 676m19 678r26 681r37 685r51 . 693m22 696m33 696r33 696m45 696r45 700m33 700r33 700m45 700r45 704m33 704r33 . 704m45 704r45 604a7 Diag{7|43A9} 658m10 673r66 674r66 681r51 681r64 690m22 690r36 691m22 . 691r36 605a7 Diag_Adj{7|43A9} 659m10 688m22 688r40 689m22 689r40 717r29 606*7 Sum{7|37F9} 649m10 651r26 653r52 722r10 607*7 Threshold{7|37F9} 653m10 678r41 640l7 Sweep 651r15 718l16 718e21 640i19 Iteration{integer} 653r27 672r19 661i14 Row{integer} 662r24 673r40 673r72 674r40 676r22 678r29 681r40 681r70 . 685r54 688r32 688r50 690r28 690r42 693r25 695r36 696r39 699r31 700r36 704r36 . 708r45 662i17 Col{integer} 673r45 674r45 674r72 676r27 678r34 681r45 681r57 685r59 . 689r32 689r50 691r28 691r42 693r30 696r51 699r42 700r51 703r31 704r48 709r45 679q19 Perform_Rotation 712l23 712e39 680*22 Tan{7|37F9} 682r63 683r45 685r45 682*22 Cos{7|37F9} 683r51 684r58 683*22 Sin{7|37F9} 684r45 696r57 700r57 704r57 710r33 684*22 Tau{7|37F9} 696r62 700r62 704r62 710r38 685*22 Adj{7|37F9} 688r57 689r57 690r49 691r49 695i26 J{integer} 696r36 696r48 699i26 J{integer} 700r41 700r48 703i26 J{integer} 704r41 704r53 707i26 J{integer} 708r42 709r42 746U17 Swap 3|37i19 8|746>23 746>29 757b17 764l11 764t15 746i23 Left{integer} 757b23 759r24 761r35 746i29 Right{integer} 757b29 759r39 762r35 750V16 Less{boolean} 3|36i18 8|750b16 750>22 750>28 750i22 Left{integer} 751r18 750i28 Right{integer} 751r34 754U17 Sort[3|39] 767s7 776a14 R{7|44A9} 777m24 X 10 system.ads 37K9*System 8|52w6 52r18 53r6 53r43 57r24 10|156e11 X 12 s-gearop.ads 44K16*Generic_Array_Operations 8|53w13 53r50 57r31 359r9 366r9 12|648e36 55+12 Scalar 8|62r7 56A12 Matrix(55+12) 8|63r7 60V21 Is_Non_Zero{boolean} 8|64r7 61u14*Back_Substitute 8|61r41 71+12 Scalar 8|67r7 72A12 Vector(71+12) 8|68r7 73A12 Matrix(71+12) 8|69r7 74v13*Diagonal 8|66r33 92+12 Scalar 8|72r6 93F12 Real 8|73r6 94A12 Matrix(92+12) 8|74r6 99*7 Zero{92+12} 8|75r6 100*7 One{92+12} 8|76r6 101u14*Forward_Eliminate 8|71r43 116v13*Square_Matrix_Length 8|102r27 130+12 X_Scalar 8|153r12 189r12 338r12 131+12 Result_Scalar 8|154r12 190r12 339r12 132A12 X_Vector(130+12) 8|155r12 191r12 340r12 133A12 Result_Vector(131+12) 8|156r12 192r12 341r12 134V21 Operation{131+12} 8|157r12 193r12 342r12 135v13*Vector_Elementwise_Operation 8|152r9 188r9 337r9 142+12 X_Scalar 8|161r12 197r12 346r12 143+12 Result_Scalar 8|162r12 198r12 347r12 144A12 X_Matrix(142+12) 8|163r12 199r12 348r12 145A12 Result_Matrix(143+12) 8|164r12 200r12 349r12 147V21 Operation{143+12} 8|165r12 201r12 350r12 148v13*Matrix_Elementwise_Operation 8|160r9 196r9 345r9 155+12 Left_Scalar 8|169r12 205r12 156+12 Right_Scalar 8|170r12 206r12 157+12 Result_Scalar 8|171r12 207r12 158A12 Left_Vector(155+12) 8|172r12 208r12 159A12 Right_Vector(156+12) 8|173r12 209r12 160A12 Result_Vector(157+12) 8|174r12 210r12 161V21 Operation{157+12} 8|175r12 211r12 164v13*Vector_Vector_Elementwise_Operation 8|168r9 204r9 204+12 Left_Scalar 8|179r12 215r12 205+12 Right_Scalar 8|180r12 216r12 206+12 Result_Scalar 8|181r12 217r12 207A12 Left_Matrix(204+12) 8|182r12 218r12 209A12 Right_Matrix(205+12) 8|183r12 219r12 211A12 Result_Matrix(206+12) 8|184r12 220r12 213V21 Operation{206+12} 8|185r12 221r12 216v13*Matrix_Matrix_Elementwise_Operation 8|178r9 214r9 269+12 Left_Scalar 8|243r12 309r12 270+12 Right_Scalar 8|244r12 310r12 271+12 Result_Scalar 8|245r12 311r12 272A12 Left_Vector(269+12) 8|246r12 312r12 273A12 Result_Vector(271+12) 8|247r12 313r12 274V21 Operation{271+12} 8|248r12 314r12 277v13*Vector_Scalar_Elementwise_Operation 8|242r9 308r9 286+12 Left_Scalar 8|252r12 318r12 287+12 Right_Scalar 8|253r12 319r12 288+12 Result_Scalar 8|254r12 320r12 289A12 Left_Matrix(286+12) 8|255r12 321r12 291A12 Result_Matrix(288+12) 8|256r12 322r12 293V21 Operation{288+12} 8|257r12 323r12 296v13*Matrix_Scalar_Elementwise_Operation 8|251r9 317r9 305+12 Left_Scalar 8|225r12 306+12 Right_Scalar 8|226r12 307+12 Result_Scalar 8|227r12 308A12 Right_Vector(306+12) 8|228r12 309A12 Result_Vector(307+12) 8|229r12 310V21 Operation{307+12} 8|230r12 313v13*Scalar_Vector_Elementwise_Operation 8|224r9 322+12 Left_Scalar 8|234r12 323+12 Right_Scalar 8|235r12 324+12 Result_Scalar 8|236r12 325A12 Right_Matrix(323+12) 8|237r12 327A12 Result_Matrix(324+12) 8|238r12 329V21 Operation{324+12} 8|239r12 332v13*Scalar_Matrix_Elementwise_Operation 8|233r9 341+12 Left_Scalar 8|270r12 342+12 Right_Scalar 8|271r12 343+12 Result_Scalar 8|272r12 344A12 Left_Vector(341+12) 8|273r12 345A12 Right_Vector(342+12) 8|274r12 346*7 Zero{343+12} 8|275r12 353v13*Inner_Product 8|269r9 368+12 X_Scalar 8|327r12 369F12 Result_Real 8|328r12 370A12 X_Vector(368+12) 8|329r12 371V22 "abs"{369F12} 8|330r13 373v13*L2_Norm 8|326r9 380+12 Left_Scalar 8|261r12 381+12 Right_Scalar 8|262r12 382+12 Result_Scalar 8|263r12 383A12 Left_Vector(380+12) 8|264r12 384A12 Right_Vector(381+12) 8|265r12 385A12 Matrix(382+12) 8|266r12 390v13*Outer_Product 8|260r9 399+12 Left_Scalar 8|279r12 400+12 Right_Scalar 8|280r12 401+12 Result_Scalar 8|281r12 402A12 Matrix(399+12) 8|282r12 404A12 Right_Vector(400+12) 8|283r12 405A12 Result_Vector(401+12) 8|284r12 406*7 Zero{401+12} 8|285r12 413v13*Matrix_Vector_Product 8|278r9 428+12 Left_Scalar 8|289r12 429+12 Right_Scalar 8|290r12 430+12 Result_Scalar 8|291r12 431A12 Left_Vector(428+12) 8|292r12 432A12 Matrix(429+12) 8|293r12 434A12 Result_Vector(430+12) 8|294r12 435*7 Zero{430+12} 8|295r12 442v13*Vector_Matrix_Product 8|288r9 457+12 Left_Scalar 8|299r12 458+12 Right_Scalar 8|300r12 459+12 Result_Scalar 8|301r12 460A12 Left_Matrix(457+12) 8|302r12 462A12 Right_Matrix(458+12) 8|303r12 464A12 Result_Matrix(459+12) 8|304r12 466*7 Zero{459+12} 8|305r12 473v13*Matrix_Matrix_Product 8|298r9 497v13*Matrix_Vector_Solution 8|353r9 521v13*Matrix_Matrix_Solution 8|356r9 538v13*Sqrt 8|118r29 545+12 Scalar 8|79r6 546A12 Matrix(545+12) 8|80r6 547u14*Swap_Column 8|78r37 557+12 Scalar 8|83r9 558A12 Matrix(557+12) 8|84r9 559u14*Transpose 8|82r36 618+12 Scalar 8|360r12 619A12 Matrix(618+12) 8|361r12 620*7 Zero{618+12} 8|362r12 621*7 One{618+12} 8|363r12 622v13*Unit_Matrix 8|359r34 635+12 Scalar 8|367r12 636A12 Vector(635+12) 8|368r12 637*7 Zero{635+12} 8|369r12 638*7 One{635+12} 8|370r12 639v13*Unit_Vector 8|366r34