V "GNAT Lib v15" A -nostdinc A -O2 A -Wextra A -Wall A -gnatwa A -g A -gnatp A -gnatg A -march=armv8-a A -mlittle-endian A -mabi=lp64 P ZX RN RV NO_FLOATING_POINT RV NO_DYNAMIC_SIZED_OBJECTS RV NO_IMPLEMENTATION_ASPECT_SPECIFICATIONS RV NO_IMPLEMENTATION_ATTRIBUTES U ada.numerics.generic_complex_arrays%b a-ngcoar.adb 36d071fd NE OL PK GE W ada.numerics%s a-numeri.ads a-numeri.ali W system%s system.ads system.ali W system.generic_array_operations%s s-gearop.adb s-gearop.ali U ada.numerics.generic_complex_arrays%s a-ngcoar.ads c4cb2ae9 BN NE OL PU PK GE W ada%s ada.ads ada.ali W ada.numerics%s a-numeri.ads a-numeri.ali W ada.numerics.generic_complex_types%s W ada.numerics.generic_real_arrays%s D ada.ads 20250808065140 76789da1 ada%s D a-numeri.ads 20250808065140 84bea7a3 ada.numerics%s D a-ngcoar.ads 20250808065140 2168fecb ada.numerics.generic_complex_arrays%s D a-ngcoar.adb 20250808065140 e290ddff ada.numerics.generic_complex_arrays%b D a-ngcoty.ads 20250808065140 e7845fd0 ada.numerics.generic_complex_types%s D a-ngrear.ads 20250808065140 86992c51 ada.numerics.generic_real_arrays%s D a-unccon.ads 20250808065140 0e9b276f ada.unchecked_conversion%s D system.ads 20250808065140 d0bef732 system%s D s-exctab.ads 20250808065140 91bef6ef system.exception_table%s D s-gearop.ads 20250808065140 f52852c9 system.generic_array_operations%s D s-stalib.ads 20250808065140 1c9580f6 system.standard_library%s G a e G c Z s b [generic_complex_arrays ada__numerics 23 22 none] X 1 ada.ads 18K9*Ada 22e8 3|16r6 16r40 19r36 21r38 23r9 281r5 4|45r14 1264r5 X 2 a-numeri.ads 20K13*Numerics 1|18k9 2|36e17 3|16r10 16r44 19r40 21r42 23r13 281r9 4|45r18 . 1264r9 X 3 a-ngcoar.ads 19K17 Real_Arrays[6|38] 20r8 4|53r20 21K17 Complex_Types[5|39] 22r8 23k22*Generic_Complex_Arrays 2|20k13 3|19z17 21z17 24r17 281l18 281e40 4|45b27 . 1264l18 1264t40 28A9*Complex_Vector(5|42R9[21]) 35r21 36r21 38r33 39r33 42r32 44r36 . 46r26 47r28 48r27 51r15 55r47 59r45 63r26 63r49 64r26 64r49 65r28 65r51 . 66r32 66r55 67r32 67r55 68r32 69r28 75r15 75r38 78r15 79r35 83r15 83r38 . 86r15 87r35 89r46 90r25 96r15 96r38 99r15 100r31 103r15 104r31 108r15 108r38 . 111r15 112r33 115r15 116r33 123r36 168r32 171r15 172r38 176r15 176r38 206r15 . 209r15 214r38 217r15 218r35 222r15 222r38 226r35 258r11 258r34 4|99r47 . 100r47 107r47 108r47 115r47 116r47 123r47 124r47 131r47 140r47 147r47 148r47 . 155r47 156r47 164r47 171r47 212r47 213r47 222r47 230r47 231r47 240r47 247r47 . 249r47 256r47 258r47 295r47 296r47 303r47 304r47 305r47 313r47 314r47 321r47 . 323r47 367r47 368r47 375r47 376r47 377r47 385r47 386r47 393r47 395r47 440r47 . 441r47 448r47 449r47 475r49 484r47 492r47 519r47 529r47 560r47 571r47 602r47 . 603r47 620r47 638r47 656r47 674r47 692r47 708r31 725r47 735r15 736r15 741r15 . 745r15 751r15 751r38 755r15 756r31 761r15 761r38 765r15 766r33 775r15 776r15 . 780r15 781r38 786r15 786r38 801r15 805r15 811r38 815r15 816r35 821r15 821r38 . 826r35 853r26 853r49 857r15 858r15 858r38 863r15 863r38 867r15 868r35 894r15 . 894r38 898r15 899r15 899r38 904r15 904r38 908r15 909r35 935r15 936r31 940r15 . 941r33 958r28 965r27 969r15 985r62 990r32 1007r38 1013r36 1031r28 1031r51 . 1154r21 1173r26 1183r21 1199r19 1213r19 1223r11 1223r34 1261r36 29A9*Complex_Matrix(5|42R9[21]) 129r21 130r21 132r33 133r33 . 135r62 138r36 140r26 141r28 143r27 146r15 150r47 155r36 159r26 159r49 160r26 . 160r49 162r28 162r51 163r28 163r51 165r32 165r55 166r32 166r55 167r32 167r55 . 168r55 172r15 175r15 182r15 182r38 185r15 186r35 190r15 190r38 193r15 194r35 . 198r15 198r38 201r15 202r35 206r38 210r35 214r15 225r15 232r15 232r38 235r15 . 236r31 239r15 240r31 244r15 244r38 247r15 248r33 251r15 252r33 257r11 260r27 . 260r50 262r26 262r49 264r30 268r30 271r17 273r21 279r47 4|61r24 67r23 73r44 . 78r58 157r47 165r47 173r47 179r47 180r47 187r47 188r47 195r47 196r47 203r47 . 204r47 220r47 229r47 239r47 257r47 265r47 266r47 267r47 275r47 276r47 283r47 . 285r47 329r47 330r47 337r47 338r47 339r47 347r47 348r47 355r47 357r47 401r47 . 402r47 409r47 410r47 411r47 419r47 420r47 427r47 429r47 456r47 457r47 464r47 . 465r47 499r47 507r47 536r47 546r47 581r47 592r47 609r47 610r47 627r47 645r47 . 663r47 681r47 699r47 708r47 711r31 719r47 770r15 771r15 771r39 776r38 781r15 . 785r15 791r15 791r38 795r15 796r35 801r38 806r35 811r15 825r15 831r15 831r38 . 835r15 836r31 841r15 841r38 845r15 846r33 871r26 871r49 875r15 876r15 876r38 . 881r15 881r38 885r15 886r35 912r26 912r49 916r15 917r15 917r38 922r15 922r38 . 926r15 927r35 945r15 946r31 950r15 951r33 973r27 977r15 993r62 998r32 1018r38 . 1024r36 1034r28 1034r51 1041r30 1042r11 1043r11 1055r17 1057r21 1119r30 . 1157r21 1164r26 1164r49 1176r26 1186r21 1194r19 1208r19 1222r11 1227r11 . 1228r11 1228r34 1236r11 1236r34 1238r11 1251r38 35V13*Re{6|43A9[19]} 35>17 4|1183b13 35a17 X{28A9} 4|1183b17 36V13*Im{6|43A9[19]} 36>17 4|1154b13 36a17 X{28A9} 4|1154b17 38U14*Set_Re 38=22 38>49 4|1212b14 38a22 X{28A9} 4|1213b7 38a49 Re{6|43A9[19]} 4|1214b7 39U14*Set_Im 39=22 39>49 4|1198b14 39a22 X{28A9} 4|1199b7 39a49 Im{6|43A9[19]} 4|1200b7 41V13*Compose_From_Cartesian{28A9} 42>7 4|985b13 42a7 Re{6|43A9[19]} 4|985b37 43V13*Compose_From_Cartesian{28A9} 44>7 44>11 4|988b13 44a7 Re{6|43A9[19]} 4|989b7 44a11 Im{6|43A9[19]} 4|990b7 46V13*Modulus{6|43A9[19]} 46>22 47r71 4|1173b13 46a22 X{28A9} 4|1173b22 47V14*"abs"=47:71{6|43A9[19]} 47a20 Right{28A9} 48V13*Argument{6|43A9[19]} 48>23 4|965b13 48a23 X{28A9} 4|965b23 50V13*Argument{6|43A9[19]} 51>7 52>7 4|968b13 51a7 X{28A9} 4|969b7 52*7 Cycle 4|970b7 54V13*Compose_From_Polar{28A9} 55>7 55>16 4|1005b13 55a7 Modulus{6|43A9[19]} 4|1006b7 55a16 Argument{6|43A9[19]} 4|1007b7 57V13*Compose_From_Polar{28A9} 58>7 58>16 59>7 4|1010b13 58a7 Modulus{6|43A9[19]} 4|1011b7 58a16 Argument{6|43A9[19]} 4|1012b7 59*7 Cycle 4|1013b7 63V14*"+"{28A9} 63>18 4|853b14 63a18 Right{28A9} 4|853b18 64V14*"-"{28A9} 64>18 4|893b14 64a18 Right{28A9} 4|894b7 65V13*Conjugate{28A9} 65>24 4|1031b13 65a24 X{28A9} 4|1031b24 66V14*"+"{28A9} 66>18 66>24 4|856b14 66a18 Left{28A9} 4|857b7 66a24 Right{28A9} 4|858b7 67V14*"-"{28A9} 67>18 67>24 4|897b14 67a18 Left{28A9} 4|898b7 67a24 Right{28A9} 4|899b7 68V14*"*"{5|42R9[21]} 68>18 68>24 4|734b14 68a18 Left{28A9} 4|735b7 68a24 Right{28A9} 4|736b7 69V14*"abs" 69>20 4|958b14 69a20 Right{28A9} 4|958b20 73V14*"+"{28A9} 74>7 75>7 4|861b14 74a7 Left{6|43A9[19]} 4|862b7 75a7 Right{28A9} 4|863b7 77V14*"+"{28A9} 78>7 79>7 4|866b14 78a7 Left{28A9} 4|867b7 79a7 Right{6|43A9[19]} 4|868b7 81V14*"-"{28A9} 82>7 83>7 4|902b14 82a7 Left{6|43A9[19]} 4|903b7 83a7 Right{28A9} 4|904b7 85V14*"-"{28A9} 86>7 87>7 4|907b14 86a7 Left{28A9} 4|908b7 87a7 Right{6|43A9[19]} 4|909b7 89V14*"*"{5|42R9[21]} 89>18 89>38 4|739b14 89a18 Left{6|43A9[19]} 4|740b7 89a38 Right{28A9} 4|741b7 90V14*"*"{5|42R9[21]} 90>18 90>41 4|744b14 90a18 Left{28A9} 4|745b7 90a41 Right{6|43A9[19]} 4|746b7 94V14*"*"{28A9} 95>7 96>7 4|749b14 95r7 Left{5|42R9[21]} 4|750b7 96a7 Right{28A9} 4|751b7 98V14*"*"{28A9} 99>7 100>7 4|754b14 99a7 Left{28A9} 4|755b7 100r7 Right{5|42R9[21]} 4|756b7 102V14*"/"{28A9} 103>7 104>7 4|934b14 103a7 Left{28A9} 4|935b7 104r7 Right{5|42R9[21]} 4|936b7 106V14*"*"{28A9} 107>7 108>7 4|759b14 107*7 Left 4|760b7 108a7 Right{28A9} 4|761b7 110V14*"*"{28A9} 111>7 112>7 4|764b14 111a7 Left{28A9} 4|765b7 112*7 Right 4|766b7 114V14*"/"{28A9} 115>7 116>7 4|939b14 115a7 Left{28A9} 4|940b7 116*7 Right 4|941b7 120V13*Unit_Vector{28A9} 121>7 122>7 123>7 4|1258b13 121i7 Index{integer} 4|1259b7 122i7 Order{positive} 4|1260b7 123i7 First{integer} 4|1261b7 129V13*Re{6|44A9[19]} 129>17 4|1186b13 129a17 X{29A9} 4|1186b17 130V13*Im{6|44A9[19]} 130>17 4|1157b13 130a17 X{29A9} 4|1157b17 132U14*Set_Re 132=22 132>49 4|1207b14 132a22 X{29A9} 4|1208b7 132a49 Re{6|44A9[19]} 4|1209b7 133U14*Set_Im 133=22 133>49 4|1193b14 133a22 X{29A9} 4|1194b7 133a49 Im{6|44A9[19]} 4|1195b7 135V13*Compose_From_Cartesian{29A9} 135>37 4|993b13 135a37 Re{6|44A9[19]} 4|993b37 137V13*Compose_From_Cartesian{29A9} 138>7 138>11 4|996b13 138a7 Re{6|44A9[19]} 4|997b7 138a11 Im{6|44A9[19]} 4|998b7 140V13*Modulus{6|44A9[19]} 140>22 141r71 4|1176b13 140a22 X{29A9} 4|1176b22 141V14*"abs"=141:71{6|44A9[19]} 141a20 Right{29A9} 143V13*Argument{6|44A9[19]} 143>23 4|973b13 143a23 X{29A9} 4|973b23 145V13*Argument{6|44A9[19]} 146>7 147>7 4|976b13 146a7 X{29A9} 4|977b7 147*7 Cycle 4|978b7 149V13*Compose_From_Polar{29A9} 150>7 150>16 4|1016b13 150a7 Modulus{6|44A9[19]} 4|1017b7 150a16 Argument{6|44A9[19]} 4|1018b7 152V13*Compose_From_Polar{29A9} 153>7 154>7 155>7 4|1021b13 153a7 Modulus{6|44A9[19]} 4|1022b7 154a7 Argument{6|44A9[19]} 4|1023b7 155*7 Cycle 4|1024b7 159V14*"+"{29A9} 159>18 4|871b14 159a18 Right{29A9} 4|871b18 160V14*"-"{29A9} 160>18 4|912b14 160a18 Right{29A9} 4|912b18 162V13*Conjugate{29A9} 162>24 4|1034b13 162a24 X{29A9} 4|1034b24 163V13*Transpose{29A9} 163>24 4|1235b13 1242l8 1242t17 163a24 X{29A9} 4|1236b7 1238r27 1238r40 1240r18 165V14*"+"{29A9} 165>18 165>24 4|874b14 165a18 Left{29A9} 4|875b7 165a24 Right{29A9} 4|876b7 166V14*"-"{29A9} 166>18 166>24 4|915b14 166a18 Left{29A9} 4|916b7 166a24 Right{29A9} 4|917b7 167V14*"*"{29A9} 167>18 167>24 4|769b14 167a18 Left{29A9} 4|770b7 167a24 Right{29A9} 4|771b7 168V14*"*"{29A9} 168>18 168>24 4|774b14 168a18 Left{28A9} 4|775b7 168a24 Right{28A9} 4|776b7 170V14*"*"{28A9} 171>7 172>7 4|779b14 171a7 Left{28A9} 4|780b7 172a7 Right{29A9} 4|781b7 174V14*"*"{28A9} 175>7 176>7 4|784b14 175a7 Left{29A9} 4|785b7 176a7 Right{28A9} 4|786b7 180V14*"+"{29A9} 181>7 182>7 4|879b14 181a7 Left{6|44A9[19]} 4|880b7 182a7 Right{29A9} 4|881b7 184V14*"+"{29A9} 185>7 186>7 4|884b14 185a7 Left{29A9} 4|885b7 186a7 Right{6|44A9[19]} 4|886b7 188V14*"-"{29A9} 189>7 190>7 4|920b14 189a7 Left{6|44A9[19]} 4|921b7 190a7 Right{29A9} 4|922b7 192V14*"-"{29A9} 193>7 194>7 4|925b14 193a7 Left{29A9} 4|926b7 194a7 Right{6|44A9[19]} 4|927b7 196V14*"*"{29A9} 197>7 198>7 4|789b14 197a7 Left{6|44A9[19]} 4|790b7 198a7 Right{29A9} 4|791b7 200V14*"*"{29A9} 201>7 202>7 4|794b14 201a7 Left{29A9} 4|795b7 202a7 Right{6|44A9[19]} 4|796b7 204V14*"*"{29A9} 205>7 206>7 4|799b14 205a7 Left{6|43A9[19]} 4|800b7 206a7 Right{28A9} 4|801b7 208V14*"*"{29A9} 209>7 210>7 4|804b14 209a7 Left{28A9} 4|805b7 210a7 Right{6|43A9[19]} 4|806b7 212V14*"*"{28A9} 213>7 214>7 4|809b14 213a7 Left{6|43A9[19]} 4|810b7 214a7 Right{29A9} 4|811b7 216V14*"*"{28A9} 217>7 218>7 4|814b14 217a7 Left{28A9} 4|815b7 218a7 Right{6|44A9[19]} 4|816b7 220V14*"*"{28A9} 221>7 222>7 4|819b14 221a7 Left{6|44A9[19]} 4|820b7 222a7 Right{28A9} 4|821b7 224V14*"*"{28A9} 225>7 226>7 4|824b14 225a7 Left{29A9} 4|825b7 226a7 Right{6|43A9[19]} 4|826b7 230V14*"*"{29A9} 231>7 232>7 4|829b14 231r7 Left{5|42R9[21]} 4|830b7 232a7 Right{29A9} 4|831b7 234V14*"*"{29A9} 235>7 236>7 4|834b14 235a7 Left{29A9} 4|835b7 236r7 Right{5|42R9[21]} 4|836b7 238V14*"/"{29A9} 239>7 240>7 4|944b14 239a7 Left{29A9} 4|945b7 240r7 Right{5|42R9[21]} 4|946b7 242V14*"*"{29A9} 243>7 244>7 4|839b14 243*7 Left 4|840b7 244a7 Right{29A9} 4|841b7 246V14*"*"{29A9} 247>7 248>7 4|844b14 247a7 Left{29A9} 4|845b7 248*7 Right 4|846b7 250V14*"/"{29A9} 251>7 252>7 4|949b14 251a7 Left{29A9} 4|950b7 252*7 Right 4|951b7 256V13*Solve{28A9} 257>7 258>7 4|1221b13 257a7 A{29A9} 4|1222b7 258a7 X{28A9} 4|1223b7 260V13*Solve{29A9} 260>20 260>23 4|1165s7 1226b13 260a20 A{29A9} 4|1227b7 260a23 X{29A9} 4|1228b7 262V13*Inverse{29A9} 262>22 4|1164b13 262a22 A{29A9} 4|1165r14 1165r38 1166r41 1167r41 264V13*Determinant{5|42R9[21]} 264>26 4|1041b13 1048l8 1048t19 264a26 A{29A9} 4|1041b26 1042r29 1043r27 268V13*Eigenvalues{6|43A9[19]} 268>26 4|1119b13 1148l8 1148t19 268a26 A{29A9} 4|1119b26 1120r39 1125r27 1133r19 1133r22 1133r45 1144r13 270U14*Eigensystem 271>7 272<7 273<7 4|1054b14 1113l8 1113t19 271a7 A{29A9} 4|1055b7 1059r39 1088r19 1088r22 1088r45 272a7 Values{6|43A9[19]} 4|1056b7 1100r39 1102m13 273a7 Vectors{29A9} 4|1057b7 1106r45 1108m19 277V13*Unit_Matrix{29A9} 278>7 279>7 279>16 4|1165s17 1248b13 278i7 Order{positive} 4|1249b7 279i7 First_1{integer} 4|1166r30 1250b7 279i16 First_2{integer} 4|1167r30 1251b7 X 4 a-ngcoar.adb 51K12 Ops=51:31 59r37 64r39 71r31 84r25 53F12 Real{6|37F9[3|19]} 66r23 84r35 105r47 120r47 129r47 136r47 160r47 169r47 . 185r47 200r47 208r47 218r47 235r47 245r47 271r47 281r47 309r47 319r47 343r47 . 353r47 381r47 391r47 415r47 425r47 446r47 462r47 474r49 483r47 490r47 491r47 . 498r47 505r47 506r47 516r47 524r47 525r47 533r47 541r47 542r47 555r47 556r47 . 565r47 566r47 567r47 576r47 577r47 586r47 587r47 588r47 619r47 626r47 637r47 . 644r47 655r47 662r47 673r47 680r47 691r47 698r47 760r15 766r15 840r15 846r15 . 941r15 951r15 958r51 970r15 978r15 1013r18 1024r18 56V13 Is_Non_Zero{boolean} 56b13 56>26 62r24 56r26 X{5|42R9[3|21]} 56r58 59U14 Back_Substitute[10|61] 10|492i22 516i22 64U14 Forward_Eliminate[10|101] 1046s7 10|493i22 517i22 71U14 Transpose[10|559] 1240s7 78V13 Length[10|116]{natural} 1059s31 1120s31 1165s30 84V13 Sqrt[10|538] 10|372i21 89K12 Instantiations 728l8 728e22 737r14 742r14 747r14 752r14 757r14 762r14 . 767r14 772r14 777r14 782r14 787r14 792r14 797r14 802r14 807r14 812r14 817r14 . 822r14 827r14 832r14 837r14 842r14 847r14 854r14 859r14 864r14 869r14 872r14 . 877r14 882r14 887r14 895r14 900r14 905r14 910r14 913r14 918r14 923r14 928r14 . 937r14 942r14 947r14 952r14 959r14 966r14 971r14 974r14 979r14 986r14 991r14 . 994r14 999r14 1008r14 1014r14 1019r14 1025r14 1032r14 1035r14 1155r14 1158r14 . 1174r14 1177r14 1184r14 1187r14 1196r14 1201r14 1210r14 1215r14 1224r14 . 1229r14 1252r14 1262r14 95V16 "*"[10|277]{3|28A9} 757r30 103V16 "*"[10|277]{3|28A9} 767r30 111V16 "*"[10|313]{3|28A9} 752r30 119V16 "*"[10|313]{3|28A9} 762r30 127V16 "*"[10|353]{5|42R9[3|21]} 747r30 135V16 "*"[10|353]{5|42R9[3|21]} 742r30 143V16 "*"[10|353]{5|42R9[3|21]} 737r30 151V16 "*"[10|390]{3|29A9} 777r30 159V16 "*"[10|390]{3|29A9} 802r30 167V16 "*"[10|390]{3|29A9} 807r30 175V16 "*"[10|296]{3|29A9} 837r30 183V16 "*"[10|296]{3|29A9} 847r30 191V16 "*"[10|332]{3|29A9} 832r30 199V16 "*"[10|332]{3|29A9} 842r30 207V16 "*"[10|413]{3|28A9} 822r30 216V16 "*"[10|413]{3|28A9} 827r30 225V16 "*"[10|413]{3|28A9} 787r30 234V16 "*"[10|442]{3|28A9} 812r30 243V16 "*"[10|442]{3|28A9} 817r30 252V16 "*"[10|442]{3|28A9} 782r30 261V16 "*"[10|473]{3|29A9} 772r30 270V16 "*"[10|473]{3|29A9} 792r30 279V16 "*"[10|473]{3|29A9} 797r30 292V16 "+"[10|135]{3|28A9} 854r30 299V16 "+"[10|164]{3|28A9} 859r30 308V16 "+"[10|164]{3|28A9} 864r30 317V16 "+"[10|164]{3|28A9} 869r30 326V16 "+"[10|148]{3|29A9} 872r30 333V16 "+"[10|216]{3|29A9} 877r30 342V16 "+"[10|216]{3|29A9} 882r30 351V16 "+"[10|216]{3|29A9} 887r30 364V16 "-"[10|135]{3|28A9} 895r30 371V16 "-"[10|164]{3|28A9} 900r30 380V16 "-"[10|164]{3|28A9} 905r30 389V16 "-"[10|164]{3|28A9} 910r30 398V16 "-"[10|148]{3|29A9} 913r30 405V16 "-"[10|216]{3|29A9} 918r30 414V16 "-"[10|216]{3|29A9} 923r30 423V16 "-"[10|216]{3|29A9} 928r30 436V16 "/"[10|277]{3|28A9} 937r30 444V16 "/"[10|277]{3|28A9} 942r30 452V16 "/"[10|296]{3|29A9} 947r30 460V16 "/"[10|296]{3|29A9} 952r30 472V16 "abs"[10|373] 959r30 481V16 Argument[10|135]{6|43A9[3|19]} 966r29 488V16 Argument[10|277]{6|43A9[3|19]} 971r29 496V16 Argument[10|148]{6|44A9[3|19]} 974r29 503V16 Argument[10|296]{6|44A9[3|19]} 979r29 515V16 Compose_From_Cartesian[10|135]{3|28A9} 986r29 522V16 Compose_From_Cartesian[10|164]{3|28A9} 991r29 532V16 Compose_From_Cartesian[10|148]{3|29A9} 994r29 539V16 Compose_From_Cartesian[10|216]{3|29A9} 999r29 553V16 Compose_From_Polar[10|164]{3|28A9} 1008r29 563V16 Compose_From_Polar[10|190]{3|28A9} 1014r29 574V16 Compose_From_Polar[10|216]{3|29A9} 1019r29 584V16 Compose_From_Polar[10|248]{3|29A9} 1025r29 599V16 Conjugate[10|135]{3|28A9} 1032r29 606V16 Conjugate[10|148]{3|29A9} 1035r29 617V16 Im[10|135]{6|43A9[3|19]} 1155r29 624V16 Im[10|148]{6|44A9[3|19]} 1158r29 635V16 Modulus[10|135]{6|43A9[3|19]} 1174r29 642V16 Modulus[10|148]{6|44A9[3|19]} 1177r29 653V16 Re[10|135]{6|43A9[3|19]} 1184r29 660V16 Re[10|148]{6|44A9[3|19]} 1187r29 671U17 Set_Im[10|582] 1201r29 678U17 Set_Im[10|600] 1196r29 689U17 Set_Re[10|582] 1215r29 696U17 Set_Re[10|600] 1210r29 707V16 Solve[10|497]{3|28A9} 1224r29 710V16 Solve[10|521]{3|29A9} 1229r29 717V16 Unit_Matrix[10|622]{3|29A9} 1252r29 723V16 Unit_Vector[10|639]{3|28A9} 1262r29 1042a7 M{3|29A9} 1046m26 1046r26 1043a7 B{3|29A9} 1046m29 1046r29 1044r7 R{5|42R9[3|21]} 1046m32 1047r14 1059i7 N{natural} 1079r36 1079r48 1080r36 1081r36 1081r48 1084r21 1085r24 . 1090r54 1091r23 1091r47 1091r54 1098r21 1104r27 1108r69 1079a7 M{6|44A9[3|19]} 1090m16 1090m40 1091m16 1091m40 1096r20 1080a7 Vals{6|43A9[3|19]} 1096m23 1102r29 1081a7 Vecs{6|44A9[3|19]} 1096m29 1108r42 1108r59 1084i11 J{integer} 1088r37 1090r19 1090r43 1091r19 1091r43 1085i14 K{integer} 1088r60 1090r26 1090r50 1091r26 1091r50 1087r16 C{5|42R9[3|21]} 1090r36 1090r65 1091r36 1091r64 1098i11 J{integer} 1100r55 1102r39 1108r55 1108r76 1100i13 Col{integer} 1102r21 1108r33 1104i17 K{integer} 1106r66 1108r48 1108r65 1106i19 Row{integer} 1108r28 1120i7 N{natural} 1124r36 1124r48 1126r36 1129r21 1130r24 1135r54 1136r23 . 1136r47 1136r54 1143r21 1124a7 M{6|44A9[3|19]} 1135m16 1135m40 1136m16 1136m40 1141r28 1125a7 R{6|43A9[3|19]} 1144m10 1147r14 1126a7 Vals{6|43A9[3|19]} 1141m7 1144r39 1129i11 J{integer} 1133r37 1135r19 1135r43 1136r19 1136r43 1130i14 K{integer} 1133r60 1135r26 1135r50 1136r26 1136r50 1132r16 C{5|42R9[3|21]} 1135r36 1135r65 1136r36 1136r64 1143i11 J{integer} 1144r28 1144r49 1238a7 R{3|29A9} 1240m21 1241r14 X 5 a-ngcoty.ads 39k22*Generic_Complex_Types 3|16w53 21r51 5|157e39 42R9 Complex 3|28r55[21] 30r52[21] 68r55[21] 89r69[21] 90r69[21] 95r15[21] . 100r15[21] 104r15[21] 231r15[21] 236r15[21] 240r15[21] 264r53[21] 4|56r30[3|21] . 60r24[3|21] 65r23[3|21] 72r44[3|21] 78r49[3|21] 96r47[3|21] 97r47[3|21] . 98r47[3|21] 104r47[3|21] 106r47[3|21] 112r47[3|21] 113r47[3|21] 114r47[3|21] . 121r47[3|21] 122r47[3|21] 128r47[3|21] 130r47[3|21] 137r47[3|21] 138r47[3|21] . 144r47[3|21] 145r47[3|21] 146r47[3|21] 152r47[3|21] 153r47[3|21] 154r47[3|21] . 161r47[3|21] 162r47[3|21] 168r47[3|21] 170r47[3|21] 176r47[3|21] 177r47[3|21] . 178r47[3|21] 184r47[3|21] 186r47[3|21] 192r47[3|21] 193r47[3|21] 194r47[3|21] . 201r47[3|21] 202r47[3|21] 209r47[3|21] 210r47[3|21] 217r47[3|21] 219r47[3|21] . 226r47[3|21] 227r47[3|21] 228r47[3|21] 236r47[3|21] 237r47[3|21] 244r47[3|21] . 246r47[3|21] 253r47[3|21] 254r47[3|21] 255r47[3|21] 262r47[3|21] 263r47[3|21] . 264r47[3|21] 272r47[3|21] 273r47[3|21] 280r47[3|21] 282r47[3|21] 293r47[3|21] . 294r47[3|21] 300r47[3|21] 301r47[3|21] 302r47[3|21] 310r47[3|21] 311r47[3|21] . 318r47[3|21] 320r47[3|21] 327r47[3|21] 328r47[3|21] 334r47[3|21] 335r47[3|21] . 336r47[3|21] 344r47[3|21] 345r47[3|21] 352r47[3|21] 354r47[3|21] 365r47[3|21] . 366r47[3|21] 372r47[3|21] 373r47[3|21] 374r47[3|21] 382r47[3|21] 383r47[3|21] . 390r47[3|21] 392r47[3|21] 399r47[3|21] 400r47[3|21] 406r47[3|21] 407r47[3|21] . 408r47[3|21] 416r47[3|21] 417r47[3|21] 424r47[3|21] 426r47[3|21] 437r47[3|21] . 438r47[3|21] 439r47[3|21] 445r47[3|21] 447r47[3|21] 453r47[3|21] 454r47[3|21] . 455r47[3|21] 461r47[3|21] 463r47[3|21] 473r49[3|21] 482r47[3|21] 489r47[3|21] . 497r47[3|21] 504r47[3|21] 517r47[3|21] 526r47[3|21] 534r47[3|21] 543r47[3|21] . 557r47[3|21] 568r47[3|21] 578r47[3|21] 589r47[3|21] 600r47[3|21] 601r47[3|21] . 607r47[3|21] 608r47[3|21] 618r47[3|21] 625r47[3|21] 636r47[3|21] 643r47[3|21] . 654r47[3|21] 661r47[3|21] 672r47[3|21] 679r47[3|21] 690r47[3|21] 697r47[3|21] . 708r10[3|21] 711r10[3|21] 718r47[3|21] 724r47[3|21] 736r38[3|21] 741r38[3|21] . 746r35[3|21] 750r15[3|21] 756r15[3|21] 830r15[3|21] 836r15[3|21] 936r15[3|21] . 946r15[3|21] 1041r53[3|21] 1044r11[3|21] 1087r29[3|21] 1132r29[3|21] 54V13 Re 4|658r47[3|21] 665r47[3|21] 1090s32[3|21] 1091s60[3|21] 1135s32[3|21] . 1136s60[3|21] 55V13 Im 4|622r47[3|21] 629r47[3|21] 1090s61[3|21] 1091s32[3|21] 1135s61[3|21] . 1136s32[3|21] 58U14 Set_Re 4|694r47[3|21] 701r47[3|21] 59U14 Set_Im 4|676r47[3|21] 683r47[3|21] 62V13 Compose_From_Cartesian{42R9[3|21]} 4|530r47[3|21] 547r47[3|21] 63V13 Compose_From_Cartesian{42R9[3|21]} 4|520r47[3|21] 537r47[3|21] 66V13 Modulus 4|640r47[3|21] 647r47[3|21] 67V14 "abs"=67:64 10|95i22[3|21] 371i22[3|21] 69V13 Argument 4|486r47[3|21] 501r47[3|21] 70V13 Argument 4|494r47[3|21] 509r47[3|21] 72V13 Compose_From_Polar{42R9[3|21]} 4|561r47[3|21] 582r47[3|21] 76V13 Compose_From_Polar{42R9[3|21]} 4|572r47[3|21] 593r47[3|21] 80V14 "+"{42R9[3|21]} 4|297r48[3|21] 331r48[3|21] 81V14 "-"{42R9[3|21]} 4|369r48[3|21] 403r48[3|21] 82V13 Conjugate{42R9[3|21]} 4|604r47[3|21] 611r47[3|21] 84V14 "+"{42R9[3|21]} 4|306r48[3|21] 340r48[3|21] 10|350i22[3|21] 410i22[3|21] . 439i22[3|21] 470i22[3|21] 85V14 "-"{42R9[3|21]} 4|378r48[3|21] 412r48[3|21] 10|57i22[3|21] 96i22[3|21] 86V14 "*"{42R9[3|21]} 4|101r48[3|21] 117r48[3|21] 181r48[3|21] 197r48[3|21] . 10|58i22[3|21] 97i22[3|21] 347i22[3|21] 387i22[3|21] 407i22[3|21] 436i22[3|21] . 467i22[3|21] 87V14 "/"{42R9[3|21]} 4|442r48[3|21] 458r48[3|21] 10|59i22[3|21] 98i22[3|21] 108V14 "+"{42R9[3|21]} 4|324r48[3|21] 358r48[3|21] 109V14 "+"{42R9[3|21]} 4|315r48[3|21] 349r48[3|21] 110V14 "-"{42R9[3|21]} 4|396r48[3|21] 430r48[3|21] 111V14 "-"{42R9[3|21]} 4|387r48[3|21] 421r48[3|21] 112V14 "*"{42R9[3|21]} 4|109r48[3|21] 189r48[3|21] 10|347i22[3|21] 387i22[3|21] . 407i22[3|21] 436i22[3|21] 467i22[3|21] 113V14 "*"{42R9[3|21]} 4|125r48[3|21] 205r48[3|21] 10|347i22[3|21] 387i22[3|21] . 407i22[3|21] 436i22[3|21] 467i22[3|21] 114V14 "/"{42R9[3|21]} 4|450r48[3|21] 466r48[3|21] X 6 a-ngrear.ads 37F9 Real 3|21r74[19] 52r15[19] 59r27[19] 69r51[19] 107r15[19] 112r15[19] . 116r15[19] 147r15[19] 155r18[19] 243r15[19] 248r15[19] 252r15[19] 4|53r32[3|19] 38k22*Generic_Real_Arrays 3|16w19 19r49 6|142e37 43A9 Real_Vector 3|35r44[19] 36r44[19] 38r54[19] 39r54[19] 42r12[19] . 44r16[19] 46r49[19] 47r51[19] 48r50[19] 52r33[19] 55r27[19] 58r27[19] 74r15[19] . 79r15[19] 82r15[19] 87r15[19] 89r25[19] 90r49[19] 205r15[19] 210r15[19] . 213r15[19] 226r15[19] 268r53[19] 272r21[19] 4|132r47[3|19] 139r47[3|19] . 163r47[3|19] 172r47[3|19] 221r47[3|19] 238r47[3|19] 312r47[3|19] 322r47[3|19] . 384r47[3|19] 394r47[3|19] 485r47[3|19] 493r47[3|19] 518r47[3|19] 527r47[3|19] . 528r47[3|19] 558r47[3|19] 559r47[3|19] 569r47[3|19] 570r47[3|19] 621r47[3|19] . 639r47[3|19] 657r47[3|19] 675r47[3|19] 693r47[3|19] 740r15[3|19] 746r15[3|19] . 800r15[3|19] 806r15[3|19] 810r15[3|19] 826r15[3|19] 862r15[3|19] 868r15[3|19] . 903r15[3|19] 909r15[3|19] 965r50[3|19] 970r33[3|19] 985r42[3|19] 989r12[3|19] . 990r12[3|19] 1006r18[3|19] 1007r18[3|19] 1011r18[3|19] 1012r18[3|19] 1056r21[3|19] . 1080r14[3|19] 1119r53[3|19] 1125r14[3|19] 1126r14[3|19] 1154r44[3|19] 1173r49[3|19] . 1183r44[3|19] 1200r12[3|19] 1214r12[3|19] 44A9 Real_Matrix 3|129r44[19] 130r44[19] 132r54[19] 133r54[19] . 135r42[19] 138r16[19] 140r49[19] 141r51[19] 143r50[19] 147r33[19] 150r27[19] . 153r18[19] 154r18[19] 181r15[19] 186r15[19] 189r15[19] 194r15[19] 197r15[19] . 202r15[19] 218r15[19] 221r15[19] 4|211r47[3|19] 248r47[3|19] 274r47[3|19] . 284r47[3|19] 346r47[3|19] 356r47[3|19] 418r47[3|19] 428r47[3|19] 500r47[3|19] . 508r47[3|19] 535r47[3|19] 544r47[3|19] 545r47[3|19] 579r47[3|19] 580r47[3|19] . 590r47[3|19] 591r47[3|19] 628r47[3|19] 646r47[3|19] 664r47[3|19] 682r47[3|19] . 700r47[3|19] 790r15[3|19] 796r15[3|19] 816r15[3|19] 820r15[3|19] 880r15[3|19] . 886r15[3|19] 921r15[3|19] 927r15[3|19] 973r50[3|19] 978r33[3|19] 993r42[3|19] . 997r12[3|19] 998r12[3|19] 1017r18[3|19] 1018r18[3|19] 1022r18[3|19] 1023r18[3|19] . 1079r14[3|19] 1081r14[3|19] 1124r14[3|19] 1157r44[3|19] 1176r49[3|19] 1186r44[3|19] . 1195r12[3|19] 1209r12[3|19] 107V13 Eigenvalues{43A9[3|19]} 4|1141s15[3|19] 109U14 Eigensystem 4|1096s7[3|19] X 8 system.ads 37K9*System 4|43r6 43r43 51r24 717r35 723r35 8|156e11 X 10 s-gearop.ads 44K16*Generic_Array_Operations 4|43w13 43r50 51r31 717r42 723r42 10|648e36 55+12 Scalar 4|60r7 56A12 Matrix(55+12) 4|61r7 60V21 Is_Non_Zero{boolean} 4|62r7 61u14*Back_Substitute 4|59r41 92+12 Scalar 4|65r6 93F12 Real 4|66r6 94A12 Matrix(92+12) 4|67r6 99*7 Zero{92+12} 4|68r6 100*7 One{92+12} 4|69r6 101u14*Forward_Eliminate 4|64r43 116v13*Square_Matrix_Length 4|78r27 130+12 X_Scalar 4|293r30 365r30 482r30 516r30 600r30 618r30 636r30 654r30 131+12 Result_Scalar 4|294r30 366r30 483r30 517r30 601r30 619r30 637r30 655r30 132A12 X_Vector(130+12) 4|295r30 367r30 484r30 518r30 602r30 620r30 . 638r30 656r30 133A12 Result_Vector(131+12) 4|296r30 368r30 485r30 519r30 603r30 . 621r30 639r30 657r30 134V21 Operation{131+12} 4|297r30 369r30 486r30 520r30 604r30 622r30 640r30 . 658r30 135v13*Vector_Elementwise_Operation 4|292r27 364r27 481r32 515r46 599r33 . 617r26 635r31 653r26 142+12 X_Scalar 4|327r30 399r30 497r30 533r30 607r30 625r30 643r30 661r30 143+12 Result_Scalar 4|328r30 400r30 498r30 534r30 608r30 626r30 644r30 662r30 144A12 X_Matrix(142+12) 4|329r30 401r30 499r30 535r30 609r30 . 627r30 645r30 663r30 145A12 Result_Matrix(143+12) 4|330r30 402r30 500r30 536r30 . 610r30 628r30 646r30 664r30 147V21 Operation{143+12} 4|331r30 403r30 501r30 537r30 611r30 629r30 647r30 . 665r30 148v13*Matrix_Elementwise_Operation 4|326r27 398r27 496r32 532r46 606r33 . 624r26 642r31 660r26 155+12 Left_Scalar 4|300r30 309r30 318r30 372r30 381r30 390r30 524r30 555r30 156+12 Right_Scalar 4|301r30 310r30 319r30 373r30 382r30 391r30 525r30 556r30 157+12 Result_Scalar 4|302r30 311r30 320r30 374r30 383r30 392r30 526r30 557r30 158A12 Left_Vector(155+12) 4|303r30 312r30 321r30 375r30 384r30 . 393r30 527r30 558r30 159A12 Right_Vector(156+12) 4|304r30 313r30 322r30 376r30 385r30 . 394r30 528r30 559r30 160A12 Result_Vector(157+12) 4|305r30 314r30 323r30 377r30 386r30 . 395r30 529r30 560r30 161V21 Operation{157+12} 4|306r30 315r30 324r30 378r30 387r30 396r30 530r30 . 561r30 164v13*Vector_Vector_Elementwise_Operation 4|299r27 308r27 317r27 371r27 . 380r27 389r27 523r14 554r13 179+12 X_Scalar 4|565r30 180+12 Y_Scalar 4|566r30 181+12 Z_Scalar 4|567r30 182+12 Result_Scalar 4|568r30 183A12 X_Vector(179+12) 4|569r30 184A12 Y_Vector(180+12) 4|570r30 185A12 Result_Vector(182+12) 4|571r30 186V21 Operation{182+12} 4|572r30 190v13*Vector_Vector_Scalar_Elementwise_Operation 4|564r13 204+12 Left_Scalar 4|334r30 343r30 352r30 406r30 415r30 424r30 541r30 576r30 205+12 Right_Scalar 4|335r30 344r30 353r30 407r30 416r30 425r30 542r30 577r30 206+12 Result_Scalar 4|336r30 345r30 354r30 408r30 417r30 426r30 543r30 578r30 207A12 Left_Matrix(204+12) 4|337r30 346r30 355r30 409r30 . 418r30 427r30 544r30 579r30 209A12 Right_Matrix(205+12) 4|338r30 347r30 356r30 410r30 . 419r30 428r30 545r30 580r30 211A12 Result_Matrix(206+12) 4|339r30 348r30 357r30 411r30 . 420r30 429r30 546r30 581r30 213V21 Operation{206+12} 4|340r30 349r30 358r30 412r30 421r30 430r30 547r30 . 582r30 216v13*Matrix_Matrix_Elementwise_Operation 4|333r27 342r27 351r27 405r27 . 414r27 423r27 540r14 575r13 236+12 X_Scalar 4|586r30 237+12 Y_Scalar 4|587r30 238+12 Z_Scalar 4|588r30 239+12 Result_Scalar 4|589r30 240A12 X_Matrix(236+12) 4|590r30 241A12 Y_Matrix(237+12) 4|591r30 242A12 Result_Matrix(239+12) 4|592r30 244V21 Operation{239+12} 4|593r30 248v13*Matrix_Matrix_Scalar_Elementwise_Operation 4|585r13 269+12 Left_Scalar 4|96r30 104r30 437r30 445r30 489r30 270+12 Right_Scalar 4|97r30 105r30 438r30 446r30 490r30 271+12 Result_Scalar 4|98r30 106r30 439r30 447r30 491r30 272A12 Left_Vector(269+12) 4|99r30 107r30 440r30 448r30 492r30 273A12 Result_Vector(271+12) 4|100r30 108r30 441r30 449r30 493r30 274V21 Operation{271+12} 4|101r30 109r30 442r30 450r30 494r30 277v13*Vector_Scalar_Elementwise_Operation 4|95r27 103r27 436r27 444r27 488r32 286+12 Left_Scalar 4|176r30 184r30 453r30 461r30 504r30 287+12 Right_Scalar 4|177r30 185r30 454r30 462r30 505r30 288+12 Result_Scalar 4|178r30 186r30 455r30 463r30 506r30 289A12 Left_Matrix(286+12) 4|179r30 187r30 456r30 464r30 . 507r30 291A12 Result_Matrix(288+12) 4|180r30 188r30 457r30 465r30 . 508r30 293V21 Operation{288+12} 4|181r30 189r30 458r30 466r30 509r30 296v13*Matrix_Scalar_Elementwise_Operation 4|175r27 183r27 452r27 460r27 . 503r32 305+12 Left_Scalar 4|112r30 120r30 306+12 Right_Scalar 4|113r30 121r30 307+12 Result_Scalar 4|114r30 122r30 308A12 Right_Vector(306+12) 4|115r30 123r30 309A12 Result_Vector(307+12) 4|116r30 124r30 310V21 Operation{307+12} 4|117r30 125r30 313v13*Scalar_Vector_Elementwise_Operation 4|111r27 119r27 322+12 Left_Scalar 4|192r30 200r30 323+12 Right_Scalar 4|193r30 201r30 324+12 Result_Scalar 4|194r30 202r30 325A12 Right_Matrix(323+12) 4|195r30 203r30 327A12 Result_Matrix(324+12) 4|196r30 204r30 329V21 Operation{324+12} 4|197r30 205r30 332v13*Scalar_Matrix_Elementwise_Operation 4|191r27 199r27 341+12 Left_Scalar 4|128r30 136r30 144r30 342+12 Right_Scalar 4|129r30 137r30 145r30 343+12 Result_Scalar 4|130r30 138r30 146r30 344A12 Left_Vector(341+12) 4|131r30 139r30 147r30 345A12 Right_Vector(342+12) 4|132r30 140r30 148r30 346*7 Zero{343+12} 4|133r30 141r30 149r30 353v13*Inner_Product 4|127r27 135r27 143r27 368+12 X_Scalar 4|473r32 369F12 Result_Real 4|474r32 370A12 X_Vector(368+12) 4|475r32 373v13*L2_Norm 4|472r29 380+12 Left_Scalar 4|152r30 160r30 168r30 381+12 Right_Scalar 4|153r30 161r30 169r30 382+12 Result_Scalar 4|154r30 162r30 170r30 383A12 Left_Vector(380+12) 4|155r30 163r30 171r30 384A12 Right_Vector(381+12) 4|156r30 164r30 172r30 385A12 Matrix(382+12) 4|157r30 165r30 173r30 390v13*Outer_Product 4|151r27 159r27 167r27 399+12 Left_Scalar 4|208r30 217r30 226r30 400+12 Right_Scalar 4|209r30 218r30 227r30 401+12 Result_Scalar 4|210r30 219r30 228r30 402A12 Matrix(399+12) 4|211r30 220r30 229r30 404A12 Right_Vector(400+12) 4|212r30 221r30 230r30 405A12 Result_Vector(401+12) 4|213r30 222r30 231r30 406*7 Zero{401+12} 4|214r30 223r30 232r30 413v13*Matrix_Vector_Product 4|207r27 216r27 225r27 428+12 Left_Scalar 4|235r30 244r30 253r30 429+12 Right_Scalar 4|236r30 245r30 254r30 430+12 Result_Scalar 4|237r30 246r30 255r30 431A12 Left_Vector(428+12) 4|238r30 247r30 256r30 432A12 Matrix(429+12) 4|239r30 248r30 257r30 434A12 Result_Vector(430+12) 4|240r30 249r30 258r30 435*7 Zero{430+12} 4|241r30 250r30 259r30 442v13*Vector_Matrix_Product 4|234r27 243r27 252r27 457+12 Left_Scalar 4|262r30 271r30 280r30 458+12 Right_Scalar 4|263r30 272r30 281r30 459+12 Result_Scalar 4|264r30 273r30 282r30 460A12 Left_Matrix(457+12) 4|265r30 274r30 283r30 462A12 Right_Matrix(458+12) 4|266r30 275r30 284r30 464A12 Result_Matrix(459+12) 4|267r30 276r30 285r30 466*7 Zero{459+12} 4|268r30 277r30 286r30 473v13*Matrix_Matrix_Product 4|261r27 270r27 279r27 497v13*Matrix_Vector_Solution 4|707r29 521v13*Matrix_Matrix_Solution 4|710r29 538v13*Sqrt 4|84r29 557+12 Scalar 4|72r34 558A12 Matrix(557+12) 4|73r34 559u14*Transpose 4|71r35 577+12 X_Scalar 4|672r30 690r30 578+12 Y_Scalar 4|673r30 691r30 579A12 X_Vector(577+12) 4|674r30 692r30 580A12 Y_Vector(578+12) 4|675r30 693r30 581U22 Update 4|676r30 694r30 582u14*Update_Vector_With_Vector 4|671r31 689r31 595+12 X_Scalar 4|679r30 697r30 596+12 Y_Scalar 4|680r30 698r30 597A12 X_Matrix(595+12) 4|681r30 699r30 598A12 Y_Matrix(596+12) 4|682r30 700r30 599U22 Update 4|683r30 701r30 600u14*Update_Matrix_With_Matrix 4|678r31 696r31 618+12 Scalar 4|718r30 619A12 Matrix(618+12) 4|719r30 620*7 Zero{618+12} 4|720r30 621*7 One{618+12} 4|721r30 622v13*Unit_Matrix 4|717r67 635+12 Scalar 4|724r30 636A12 Vector(635+12) 4|725r30 637*7 Zero{635+12} 4|726r30 638*7 One{635+12} 4|727r30 639v13*Unit_Vector 4|723r67